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a b s t r a c t

This paper proposes a technique to estimate the angular velocity of a rigid body from vector measure-
ments. Compared to the approaches presented in the literature, it does not use attitude information nor
rate gyros as inputs. Instead, vector measurements are directly filtered through a nonlinear observer
estimating the angular velocity. Convergence is established using a detailed analysis of the linear-time
varying dynamics appearing in the estimation error equation. This equation stems from the classic Euler
equations and measurement equations. A high gain design allows to establish local uniform exponential
convergence. Simulation results are provided to illustrate the method.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

This article considers the question of estimating the angular ve-
locity of a rigid body from embedded sensors. This broad ques-
tion has applications in various fields of engineering and applied
science. Some specific examples are as follows. In aerospace, the
deployment phase of spinning satellites starts by a detumblingma-
neuver during which the angular velocity is controlled in an active
way until it reaches a zero value (Bošković, Li, & Mehra, 2000). The
control strategy employs an estimation of this variable, in closed-
loop. High velocity spinning objects are very common in ballistics.
The XM25 air-burst rifle (smart-weapon) fires smart shells which
estimate their rotation to determine the traveled distance (so that
explosion of the projectile can be activated at any user-defined dis-
tance). Finally, the problem of angular velocity estimation can also
be found in the emerging field of smart devices for sports such as
the on-board football camera (Kitani, Horita, & Hideki, 2012) as it
is important for athletes in many sports to train their skills to spin
a ball.

In the literature, several types of methods have been proposed
to address this question. On the one hand, the straightforward
solution is to use a strap-down rate gyro (Titterton & Weston,
2004), which directly provides measurements of the angular

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Marco Lovera
under the direction of Editor Toshiharu Sugie.

E-mail addresses: lionel.magnis@mines-paristech.fr (L. Magnis),
nicolas.petit@mines-paristech.fr (N. Petit).

http://dx.doi.org/10.1016/j.automatica.2016.09.027
0005-1098/© 2016 Elsevier Ltd. All rights reserved.
velocities. However, rate gyros being relatively fragile and
expensive components, prone to drift, other types of solutions
are often preferred. Instead, a two-step approach is commonly
employed. The first step is to determine attitude from vector
measurements, i.e. on-board measurements of reference vectors
being known in a fixed frame. Vector measurements play a central
role in the problem of attitude determination as discussed in a
recent survey (Crassidis, Markley, & Cheng, 2007). In a nutshell,
when two or more independent vectors are measured with vector
sensors attached to a rigid body, its attitude can be simply defined
as the solution of the classicWahba problem (Wahba, 1965) which
formulates a minimization problem having the rotation matrix
from a fixed frame to the body frame as unknown. The second
step is to reconstruct angular velocities from the attitude. At any
instant, full attitude information can be obtained (Bar-Itzhack,
1996; Choukroun, 2003; Shuster, 1978, 1990). In principles, once
the attitude is known, angular velocity can be estimated from a
time-differentiation. The survey (Bar-Itzhack, 2001) names this
approach the derivative method. However, noise disturbs this
process. To address this issue, introducing a priori information in
the estimation process is a valuable technique to filter-out noise
from the estimates. For this reason, numerous observers using
Euler’s equations for a rigid body have been proposed to estimate
angular velocity (or angularmomentum,which is equivalent) from
full attitude information (Jorgensen & Gravdahl, 2011; Salcudean,
1991; Sunde, 2005; Thienel & Sanner, 2007). Besides this two-
step approach, a more direct solution can be proposed. In this
paper, we expose an algorithm that directly uses the vector
measurements and reconstructs the angular velocity in a simple
manner.
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The contribution of this paper is a nonlinear observer recon-
structing the angular velocity of a rotating rigid body from vector
measurements directly, namely by bypassing the relatively heavy
first step of attitude estimation. Variants and extensions of this ap-
proach can be found inMagnis (2015), Magnis and Petit (2013) and
Magnis and Petit (2015a,b). The proposedmethod allows one to es-
timate the angular velocity without any gyroscope. Contrary to the
method presented in Oshman and Dellus (2003), it does not em-
ploy time differentiation of the measurements.

This paper is organized as follows. In Section 2, we introduce
the notations and the problem statement. We analyze the attitude
dynamics (rotation and Euler equations) and relate it to the
measurements. In Section 3, we define a nonlinear observer with
extended state and output injection. To prove its convergence, the
error equation is identified as a linear time-varying (LTV) system
perturbed by a linear–quadratic term. The dominant part of the
LTV dynamics can be shown, by a scaling resulting from a high gain
design, to generate an arbitrarily fast exponentially convergent
dynamics. In turn, this property reveals instrumental to conclude
on the exponential uniform convergence of the error dynamics.
Illustrative simulation results are given in Section 4. Conclusions
and perspectives are given in Section 5.

2. Notations and problem statement

2.1. Notations

Norms. The Euclidean norms in R3 and in R9 are denoted by | · |.
The induced norm on 9 × 9 matrices is denoted by ∥·∥. Namely,
∥M∥ = maxX∈R9, |X |=1 |MX |.

The cross-product matrix associated with a vector x ∈ R3 is
denoted by [x×], i.e. ∀y ∈ R3, [x×] y = x × y. Namely,

[x×] ,

 0 −x3 x2
x3 0 −x1

−x2 x1 0


where x1, x2, x3 are the coordinates of x in the standard basis of R3.

2.2. Problem statement

Consider a rigid body rotating with respect to an inertial frame
Ri. Note R the rotation (orthogonal) matrix representing the linear
mapping from Ri to a body frame Rb attached to the rigid body,
expressed in Ri. R satisfies the differential equation

Ṙ = R [ω×] (1)

where ω is the angular velocity of the rigid body expressed in the
body frame. The dynamics of ω itself is governed by the famed
Euler’s equations (Landau & Lifchitz, 1982)

ω̇ = J−1 (Jω × ω + τ) (2)

where J = diag(J1, J2, J3) is the matrix of inertia1 and τ is the
external torque applied to the rigid body.

Consider two reference vectors å, b̊ expressed in the inertial
frame. Then, the expressions of a, b in the body frame at time t are

a(t) = R(t)T å, b(t) = R(t)T b̊. (3)

The variables a, b are called vector measurements. For implemen-
tation, they can be produced by direction sensors such as e.g.

1 Without loss of generality, we consider that the axes of Rb are aligned with the
principal axes of inertia of the rigid body.
accelerometers, magnetometers or Sun sensors to name a few
(Magnis & Petit, 2014).

We now formulate some assumptions.

Assumption 1. å, b̊ are constants and linearly independent.

Assumption 2. J and τ are known.

Assumption 3. ω is bounded: |ω(t)| ≤ ωmax at all times.

The problem we address in this paper is the following.

Problem 1. From measurements of the type (3), find an estimate
ω̂ of the angular velocity ω appearing in (1), assuming it satisfies
(2).

Remark 1. Without loss of generality, we assume åT b̊ ≥ 0 (if not,
one can simply consider −å instead of å). We denote

p , åT b̊ ≥ 0.

Assumption 1 implies that p is constant and p ∈ [0, 1). Note that,
for all time t

a(t)Tb(t) = åTR(t)R(t)T b̊ = åT b̊ = p.

3. Observer definition and analysis of convergence

3.1. Observer definition

From Assumption 1, we have d
dt å = 0. Hence, the time deriva-

tive of the measurement a is

ȧ = ṘT å = − [ω×] RT å = a × ω (4)

and the same holds for ḃ = b × ω. To solve Problem 1, the main
idea of the paper is to consider the reconstruction of the extended
9-dimensional state X by its estimate X̂

X =

aT bT ωT T , X̂ =


âT b̂T ω̂T

T
.

The state is governed by

Ẋ =

 a × ω
b × ω

E(ω) + J−1τ

 (5)

and the following observer is proposed

˙̂X =

 a × ω̂ − αk(â − a)
b × ω̂ − αk(b̂ − b)

E(ω̂) + J−1τ + k2

a × â + b × b̂


 (6)

where α ∈ (0, 2
√
1 − p) and k > 0 are constant (tuning) parame-

ters. Denote

X̃ , X − X̂ ,

ãT b̃T ω̃T

T
(7)

the error state. We have

˙̃X =

 −αkI 0 [a×]
0 −αkI [b×]

k2 [a×] k2 [b×] 0

 X̃ +

 0
0

E(ω) − E(ω̂)


. (8)

In Section 3.4 we will exhibit, for each value 0 < α <
(2

√
1 − p), a threshold value k∗such that for k > k∗, X̃ converges

locally uniformly exponentially to zero.
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3.2. Preliminary change of variables and properties

The study of the dynamics (8) employs a preliminary change of
coordinates. Denote

Z ,


ãT b̃T

ω̃

k

T
T

(9)

yielding a reformulation of (8)

Ż = kA(t)Z +


0 0

E(ω)T − E(ω̂)T

k

T

(10)

with

A(t) ,


−αI 0 [a(t)×]
0 −αI [b(t)×]

[a(t)×] [b(t)×] 0


(11)

whichwewill analyze as an ideal linear time-varying (LTV) system

Ż = kA(t)Z (12)

disturbed by the input term

ξ ,


0 0

E(ω)T − E(ω̂)T

k

T

. (13)

The idea is that for sufficiently large values of k, the rate of con-
vergence of (12) will ensure stability of system (10). We start by
upper-bounding A(t) and the disturbance (13).

Proposition 1 (Bound on the Unforced LTV System). A(t) defined
in (11) is upper-bounded by

Amax , max


2 + 2α2,

3 + α2


.

Proof. Let Y ∈ R9 such that |Y | = 1. For convenience, denote

Y =

Y T
1 Y T

2 Y T
3

T
with Yi ∈ R3. One has

|A(t)Y |
2

= | − αY1 + a × Y3|
2
+ | − αY2 + b × Y3|

2

+ |a × Y1 + b × Y2|
2

≤ (1 + α2)

|Y1|

2
+ |a × Y3|

2
+ |Y2|

2
+ |b × Y3|

2
+ 2


|a × Y1|

2
+ |b × Y2|

2
≤ max


2 + 2α2, 3 + α2

|Y |
2

= A2
max.

Hence, ∥A(t)∥ = max|Y |=1 |A(t)Y | ≤ Amax.

Proposition 2 (Bound on the Disturbance). For any Z, ξ is bounded
by

|ξ | ≤
√
2ωmax|Z | + k|Z |

2. (14)

Proof. We have

|ξ | =
1
k
|E(ω) − E(ω̂)|

with, due to the quadratic nature of E(·),

E(ω) − E(ω̂) = J−1 (Jω̃ × ω + Jω × ω̃ − Jω̃ × ω̃)

Using J = diag(J1, J2, J3), we have

J−1 (Jω̃ × ω) =



1
J1

(J2ω̃2ω3 − J3ω2ω̃3)

1
J2

(J3ω̃3ω1 − J1ω3ω̃1)

1
J3

(J1ω̃1ω2 − J2ω1ω̃2)

 .
Using similar expressions for J−1(Jω × ω̃) and J−1(Jω̃ × ω̃) yields

E(ω) − E(ω̂) =



J2 − J3
J1

(ω2ω̃3 + ω̃2ω3)

J3 − J1
J2

(ω3ω̃1 + ω̃3ω1)

J1 − J2
J3

(ω1ω̃2 + ω̃1ω2)

−



J2 − J3
J1

ω̃2ω̃3

J3 − J1
J2

ω̃3ω̃1

J1 − J2
J3

ω̃1ω̃2


, δ1 − δ2.

As J1, J2, J3 are the main moments of inertia of the rigid body, we
have (Landau & Lifchitz, 1982, Section 32, 9) Ji ≤ Jj + Jk for all
permutations i, j, k and hence J2 − J3

J1

 ,  J3 − J1
J2

 ,  J1 − J2
J3

 ≤ 1.

As a straightforward consequence |δ2| ≤ |ω̃|
2. Moreover, by the

Cauchy–Schwarz inequality

(ω2ω̃3 + ω̃2ω3)
2

≤ (ω2
2 + ω2

3)(ω̃
2
2 + ω̃2

3) ≤ (ω2
2 + ω2

3)|ω̃|
2.

Using similar inequalities for all the coordinates of δ1 yields

|δ1|
2

≤ 2|ω|
2
|ω̃|

2
≤ 2ω2

max|ω̃|
2.

Hence,

|ξ | ≤
|δ1| + |δ2|

k
≤

√
2ωmax

 ω̃k
+ k

 ω̃k
2

≤
√
2ωmax|Z | + k|Z |

2.

3.3. Analysis of the LTV dynamics Ż = kA(t)Z

We will now use a result on the exponential stability of LTV
systems. The claim of Hill and Ilchmann (2011, Theorem 2.1),
which is instrumental in the proof of the next result, is as follows:
consider a LTV system Ż = M(t)Z such that: (i)M(·) is l-Lipschitz,
with l > 0, (ii) there exist K ≥ 1, c ≥ 0 such that for any t and
any s ≥ 0,

eM(t)s
 ≤ Ke−cs (frozen-time exponential stability).

Then, for any t0, Z0, the solution of Ż = M(t)Z with initial condition
Z(t0) = Z0 satisfies, for any t ≥ t0,

|Z(t)| ≤ Ke(
√
Kl ln K−c)(t−t0)|Z0|.

Using this result, we will show that the convergence of (12) can
be tailored by choosing k to arbitrarily increase the rate of conver-
gence, while keeping the overshoot constant.

Theorem 1. Let α ∈ (0, 2
√
1 − p) be fixed. There exists a continu-

ous function γ (k) satisfying

lim
k→+∞

γ (k) = +∞

such that the solution of (12) satisfies

|Z(t)| ≤ Ke−γ (k)(t−t0)|Z(t0)|

with

K ,

1 +
α

2
√
1−p

1 −
α

2
√
1−p

(15)

for any initial condition t0, Z(t0) and any t ≥ t0.

Proof. Consider any fixed value of t . We start by studying the
frozen-time matrix A(t). Denote

µ ,

8(1 − p2).



L. Magnis, N. Petit / Automatica 75 (2017) 46–53 49
Introduce the following (time-varying) matrices

P1 =


a 0

b − pa
2(1 − p2)

0 b
a − pb
2(1 − p2)

0 0 0


P2 =

1
µ

2(pa − b) 0
2(a − pb) 0
α a × b −


8 − α2 a × b


P3 =

1
µ

 2a × b 0
2a × b 0

α(b − a)

4(1 + p) − α2(a − b)


P4 =

1
µ

 2a × b 0
−2a × b 0
α(a + b) −


4(1 − p) − α2(a + b)


and

P = (P1|P2|P3|P4) ∈ R9×9.

We have

P−1A(t)P =

M1 0 0 0
0 M2 0 0
0 0 M3 0
0 0 0 M4


with

M1 = −αI, Mi =
1
2


−α −


αi − α2

αi − α2 −α


for i = 2, 3, 4 with

α2 , 2
√
2 > α3 , 2


1 + p ≥ α4 , 2


1 − p > α.

For all s ≥ 0eA(t)s
 ≤ ∥P∥

P−1
 e−

α
2 s.

Moreover

∥P∥
P−1

 =


λmax(PTP)

λmin(PTP)

where λmax(·), λmin(·) respectively designate the maximum and
minimum eigenvalues. Besides,

PTP =

 I 0 0 0
0 Q2 0 0
0 0 Q3 0
0 0 0 Q4


with, for i = 2, 3, 4

Qi =


1 +

α2

α2
i

α

αi


1 −

α

αi

α

αi


1 −

α

αi
1 −

α2

α2
i


yielding the eigenvalues

eig(PTP) =


1, 1 ±

α

2
√
2
, 1 ±

α

2
√
1 + p

, 1 ±
α

2
√
1 − p


.

Thus, for all s ≥ 0

∥eA(t)s
∥ ≤ Ke−

α
2 s
with

K =


λmax(PTP)

λmin(PTP)
=

1 +
α

2
√
1−p

1 −
α

2
√
1−p

.

Let the tuning gain k > 0 be fixed. The scaled matrix kA(·) satisfies

∥ekA(t)s
∥ ≤ Ke−

kα
2 s, ∀t, ∀s ≥ 0.

Moreover, for any Y ∈ R9 and any t, s ∈ R, one has

(kA(s) − kA(t))Y = k
 s

t
Ȧ(u)du Y

= k



 s

t
a(u) × ω(u)du Y3 s

t
b(u) × ω(u)du Y3 s

t
a(u) × ω(u)du Y1 +

 s

t
b(u) × ω(u)du Y2

 .

Hence

|(kA(s) − kA(t))Y |
2

≤ 2ω2
maxk

2
|s − t|2|Y |

2.

Thus, kA(·) is kL-Lipschitz with

L ,
√
2ωmax. (16)

We now apply Hill and Ilchmann (2011, Theorem 2.1). For any t0
and any Z0, the solution of (12) with initial condition Z(t0) = Z0
satisfies for all t ≥ t0

|Z(t)| ≤ Ke
√

kKL ln K−
kα
2


(t−t0)

|Z0|

which concludes the proof with

γ (k) ,
kα
2

−
√
kKL ln K . (17)

Remark 2. Additionally, one can note that: (i) γ (k) > 0 ⇔ k >
4KL ln K

α2 in which case Theorem 1 ensures exponential stability of
system (12), (ii) γ (·) is strictly increasing for k > 4KL ln K

α2 , (iii) in the
case where p = 1, which does not fall under the assumptions of
this paper, the preceding analysiswould not hold. First, the interval
(0, 2

√
1 − p) would be empty. Second, µ = 0 and the matrices Pi

would not be well defined.

3.4. Convergence of the observer

Define r as

r(k) ,
1

√
AmaxK 3


1 −

K 2
√
2ωmax

γ (k)


γ (k)
k

 3
2

(18)

and k∗ as

k∗
=

√
ln K +

√
ln K + 2αK

2
α2

√
2Kωmax > 0. (19)

The following holds

Proposition 3. r(k) > 0 if and only if k > k∗

Proof. A simple rewriting of r(k) > 0 yields, successively,

r(k) > 0 ⇔ γ (k) > K 2
√
2ωmax = K 2L

⇔
α

2
k −

√
LK ln K

√
k − K 2L > 0

⇔
√
k >

√
LK ln K +

√
LK ln K + 2αLK 2

α
=

√
k∗

which concludes the proof.
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We can now state the main result of the paper.

Theorem 2 (Solution to Problem 1). For any α ∈ (0, 2
√
1 − p),

there exists k∗ defined by (19) such that for k > k∗, the ob-
server (6) defines an error dynamics (8) for which the equilibrium 0 is
locally uniformly exponentially stable. The basin of attraction of this
equilibrium contains the ellipsoid
X̃(t0), |ã(t0)|2 + |b̃(t0)|2 +

|ω̃(t0)|2

k2
< r(k)2


(20)

where r(k) is defined by (18).

Proof. Let k > k∗. Consider the candidate Lyapunov function

V (t, Z) , ZT


+∞

t
φ(τ , t)Tφ(τ , t)dτ


Z

where φ is the transition matrix of system (12). Let (t, Z) be
fixed. From Proposition 1, kA(·) is bounded by kAmax. Thus (see for
example Khalil, 2000, Theorem 4.12)

V (t, Z) ≥
1

2kAmax
|Z |

2 , c1|Z |
2 , W1(Z).

Moreover, Theorem 1 implies that for all τ ≥ t

|φ(τ , t)Z | ≤ Ke−γ (k)(τ−t)
|Z |

which gives

V (t, Z) ≤ K 2


+∞

t
e−2γ (k)(τ−t)dτ |Z |

2
=

K 2

2γ (k)
|Z |

2

, c2|Z |
2 , W2(Z).

By construction, V satisfies

∂V
∂t

(t, Z) +
∂

∂Z
V (t, Z)kA(t)Z = −|Z |

2.

Hence, the derivative of V along the trajectories of (10) is
d
dt V (t, Z) = −|Z |

2
+

∂V
∂Z (t, Z) ξ . Using ∂

∂Z
V (t, Z)

 = 2
 +∞

t
φ(τ , t)Tφ(τ , t)dτZ

 ≤
K 2

γ (k)
|Z |

together with inequality (14) yields∂V∂Z (t, Z) ξ

 ≤
K 2

γ (k)

√
2ωmax|Z |

2
+ k|Z |

3


.

Hence

d
dt

V (t, Z) ≤ −|Z |
2


1 −

K 2
√
2ωmax

γ (k)
−

kK 2

γ (k)
|Z |


, −W3(Z).

As k > k∗, we have 1 −
K2√2ωmax

γ (k) > 0. We proceed as in
Khalil (2000, Theorem 4.9). If the initial condition of (10) satisfies
|Z(t0)| < r(k), or equivalently

|Z(t0)| <
γ (k)
kK 2


1 −

K 2
√
2ωmax

γ (k)


×


c1
c2

then W3(Z(t0)) > 0 and, while W3(Z(t)) > 0, Z(·) remains
bounded by

|Z(t)|2 ≤
V (t)
c1

≤
V (t0)
c1

≤
c2
c1

|Z(t0)|2
which shows that

W3(Z) ≥


1 −

K 2
√
2ωmax

γ (k)
−

kK 2

γ (k)


c2
c1

|Z(t0)|


|Z |

2

, c3|Z |
2

so that
d
dt

V (t, Z(t)) ≤ −c3|Z(t)|2 ≤ −
c3
c2

V (t, Z(t))

and in the end

|Z(t)|2 ≤
1
c1

e−
c3
c2

(t−t0)V (t0, Z(t0))

≤
c2
c1

e−
c3
c2

(t−t0)
|Z(t0)|2.

This shows that the 0 equilibrium of (10) is locally uniformly ex-
ponentially stable and that its basin of attraction contains the ball
of equation

|Z(t0)|2 < r(k)2.

Using (9) to go back to the ã, b̃, ω̃ coordinates allows one to deduce
that the basin of attraction contains the ellipsoid (20).

Remark 3. The limitations imposed on ã(t0) and b̃(t0) in (20) are
not truly restrictive, as the actual values a(t0), b(t0) are assumed
known, so the observer may be initialized with ã(t0) = 0, b̃(t0) =

0. What matters is that the error on the unknown quantity ω(t0)
can be large in practice. Interestingly, when k goes to infinity r(k)

tends to the limit 1
√
AmaxK3


α
2

 3
2 > 0 and arbitrarily large initial

error ω̃(t0) is thus allowed from (20).

Remark 4. The threshold k∗ depends linearly onωmax, which gives
helpful hint in the tuning of observer (6).

Remark 5. As c3
c2

goes to infinity with k, the convergence rate is
arbitrary fast for k large enough.

4. Simulation results

In the simulations reported here, we consider that the rigid
body is a parallelepiped of size 10 × 10 × 20 [cm3

] having a
homogeneously distributed mass of 2 [kg]. The resulting moments
of inertia are

J1 = 88 [kg cm2
], J2 = 88 [kg cm2

], J3 = 33 [kg cm2
].

No torque is applied to the system, which is thus in free-rotation.

4.1. Sensitivity to parameters

We illustrate the dependence of the observer with respect to
three parameters: (i) p which quantifies the linear independence
of (å, b̊), (ii) ωmax the maximal rotation rate of the rigid body, (iii)
the tuning gain k. To this end, we chose the reference vectors as

å =

1 0 0

T
, b̊ =


p


1 − p2 0

T
.

For sake of accuracy in the implementation, reference dynamics
(5) and state observer (6) were simulated using Runge–Kutta 4
method with sample period 0.1 [s] for various values of p and
ω(0) and with α =

√
1 − p. Additive white Gaussian noise

with standard deviation σa = 0.025 [Hz−
1
2 ] (respectively σb =

0.02 [Hz−
1
2 ]) was added to each measurement coordinate of a

(respectively b). Typical measurements are given in Fig. 1.
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Fig. 1. Vector measurements: a (top, three coordinates) and b (bottom, three
coordinates).

Fig. 2. k = 0.25, ωmax = 6 [°/s]. The rate of convergence degrades when p
increases.

Fig. 2 shows the influence of p. When p gets close to 1, the
rate of convergence is decreased. This was to be expected. To the
limit, when p → 1, all the matrices A(t) become singular and the
proof of convergence cannot be applied anymore. Note that the
measurement noise is smoothly filtered by the observer, thanks to
the relatively low value of the gain k.

In Fig. 3, we report the behavior of the observer for increasing
values ofωmax. The faster the rotation, the slower the convergence.
A faster convergence can be achieved by increasing the gain k. This
increases the sensitivity to noise, as represented in Fig. 4.

4.2. Orbital trajectory

We now challenge Assumption 1. We investigate the behavior
of the observer in the case where b̊ is time-varying, which might
happen in real-life applications. In the following, the rigid body is
Fig. 3. k = 0.25, p = 0.2. Impact of ωmax on the convergence rate.

Fig. 4. ωmax = 62 [°/s], p = 0.2. When k increases, the convergence is faster but
the measurement noise filtering degrades.

Fig. 5. Variations of the normalized reference magnetic field along the orbit.

a satellite in orbit. It is rotating about its center of gravitywhich tra-
jectory is an orbit. The two reference vectors are the Sun direction å
and the normalizedmagnetic field b̊. The satellite is equipped with
6 Sun sensors providing at all times a measure of the Sun direction
ya in a Sun sensor frameRs, and 3magnetometers able tomeasure
the normalized magnetic field yb in a magnetometer frame Rm. It
shall be noted that the sensor frames Rs need not coincide with
Rm and can also differ from the body frame Rb (defined along the
principal axes of inertia) through a constant rotation Rm,b, respec-
tively Rs,b. With these notations, we have

a = RT
m,bya, b = RT

s,byb
which is a simple change of coordinates of the measurements.

We simulate 50 min (approx. half a period) of the trajectory
of the satellite on a circular orbit with altitude 765 [km] and
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Fig. 6. k = 0.25. Observer performance along the orbit. The residual error is due to the variation of b̊ and the measurement noise. An artificial reset is made every 300 [s].
inclination 30 [°] with respect to a polar orbit. Leaving out the
consideration of Earth shadowing (which does not occur for this
half orbit), the Sun direction å is considered as constant. In the
simulation its value is

å = (0.3977 0.3445 0.1989)T

This is not the case for the normalizedmagnetic field b̊which varies
significantly with the latitude. As a result, the statemodel (5) is not
valid. To accurately simulate the values of b(t), we compute the full
rotation dynamics (1)–(2)2 and use the measurements Eq. (3). b̊ is
determined by the position of the satellite using the IGRF12model.
Its values are reported in Fig. 5. Additivewhite Gaussian noisewith
standard deviation 0.02 [Hz−

1
2 ] was added to each coordinate of

a, b. Again, we use a Runge–Kutta 4 method with sampling period
0.1 [s]. The initial condition on ω is

ω(0) = (0 5 − 2.5)T [°/s].

The performance of the observer is represented in Fig. 6. An
artificial reset is performed every 300 [s] to stress the convergence
properties of the error. As can be expected the convergence rate
and the peaking depend on the initial time, hence on the value
of b̊. However, the variations of these convergence parameters
remain small. A residual error of about 0.3 [°/s] remains on each
coordinate of ω − ω̂. This is partly due to measurement noise and
partly to the fact that b̊ varies with time. In this simulation, the
contribution of those two phenomenon to the error are of similar
magnitude.With less noisy sensors, itwould bepossible to increase
the gain k further to reduce the sum of these two contributions to
the error.

5. Conclusions and perspectives

A new method to estimate the angular velocity of a rigid
body has been proposed in this article. The method uses on-
board measurements of constant and independent vectors. The
estimation algorithm is a nonlinear observer which is very simple
to implement and induces a very limited computational burden.
At this stage, an interesting (but still preliminary) conclusion is
that, in the cases considered here, rate gyros could be replaced
with an estimation software employing cheap, rugged and resilient
sensors. In fact, any set of sensors producing vector measurements
such as e.g., Sun sensors, magnetometers, could constitute one
such alternative. Assessing the feasibility of this approach requires
further investigations including experiments.

More generally, this observer should be considered as a first
element of a class of estimation methods which can be developed

2 For computational efficiency, we used the standard quaternion parametrization
of R to simulate (1).
to address several cases of practical interest. In particular, the
introduction of noise in the measurement and uncertainty on the
input torque (assumed here to be known) will require extensions
such as optimal filtering to treat more general cases. White or
colored noises will be good candidates to model these elements.
Also, slow variations of the reference vectors å, b̊ should deserve
particular care, because such drifts naturally appear in some cases.
For example,Earth’s magnetic field measured on-board satellites
varies according to the position along the orbit.

On the other hand, one can also consider that this method can
be useful for other estimation tasks. Among the possibilities are
the estimation of the inertia J matrix which we believe is possible
from the measurements considered here. This could be of interest
for the recently considered task of space debris removal (Bonnal,
Ruault, & Desjean, 2013).

Finally, recent attitude estimation techniques have favored the
use of vector measurements together with rate gyros measure-
ments as inputs. Among these approaches, one can find Extended
Kalman Filters (EKF)-like algorithms e.g. Choukroun, Bar-Itzhack,
and Oshman (2006), Choukroun, Weiss, Bar-Itzhack, and Oshman
(2012) and Schmidt, Ravandoor, Kurz, Busch, and Schilling (2008),
nonlinear observers (Grip, Fossen, Johansen, & Saberi, 2012; Ma-
hony, Hamel, & Pflimlin, 2008; Martin & Salaün, 2010; Tayebi,
Roberts, & Benallegue, 2011; Trumpf, Mahony, Hamel, & Lageman,
2012; Vasconcelos, Silvestre, & Oliveira, 2008), Wahba-based fil-
tering, unscented Kalman filtering, particle filtering. This contribu-
tion suggests that, here also, the rate gyros could be replaced with
more in-depth analysis of the vector measurements.
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