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a b s t r a c t

The paper exposes some of the potential of a recently introduced backstepping transformation for linear
uncertain time-delay systems to address the classic problems of equilibrium regulation under partial
measurements, disturbance rejection, parameter or delay adaptation. For each of these problems, an
implementable control strategy is proposed. It is analyzed through a convergence analysis of infinite
dimensional dynamics, based on a transport partial differential equation representation of the estimated
input delay and the mentioned backstepping transformation. The considered controllers contain this
representation of the system, under the form of a distributed parameter system, and use it to determine
relevant adaptation strategies. An illustration example is proposed.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This paper addresses the general problem of equilibrium reg-
ulation of (potentially) unstable linear systems with an uncertain
input time-delay. For such systems, predictor approaches (see e.g.
in Artstein, 1982, Kwon & Pearson, 2002, Manitius & Olbrot, 2002
and Smith, 1959) are often considered. As established in numer-
ous recent surveys and research papers (e.g. Huang & Lin, 1995,
Richard, 2003 or Zhong, 2006), the lack of robustness of this tech-
nique with respect to the uncertainty on the delay is still a major
concern in automatic control theory, especially in view of imple-
mentation, in which it often appears as a performance bottleneck
(Mondie & Michiels, 2003).

Lately (see Krstic, 2008; Krstic & Bresch-Pietri, 2009; Krstic &
Smyshlyaev, 2008 or also Krstic, 2009), a new class of predictor-
based techniques has been proposed to address this uncertainty
for single input time-delay systems. This methodology is based on
a modeling of the actuator delay as a transport partial differential
equation (PDE), assuming that the full actuator state (i.e. the past
values of the input) is known over an interval of length equal to the
delay, as in Bresch-Pietri and Krstic (2009) for example.

In this paper, we follow this methodology and develop an
implementable form of the resulting controller in the spirit of
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Bresch-Pietri and Krstic (2010). In details, we use a backstepping
boundary control method on a transport PDE introduced to model
the delay. This transformation allows to use systematic Lyapunov
design tools for robust stabilization and adaptation. Several classic
cases are treated. While the resulting controllers could seem
intuitive in their formulation, the results stated here and the
corresponding proofs are, up to our knowledge, totally new.

A series of classic issues in linear automatic control is
considered: model uncertainties, disturbance rejection and partial
state measurement. We address these difficulties separately
and propose a dedicated implementable solution for each of
them, along with analysis of convergence that stress the role of
the various adaptation and feedback components. The goal of
this paper is to present a unified framework of these various
techniques, for the sake of comparisons of their merits and
limitations in the light of their mathematical analysis. In view of
application, the interested reader and the practitioner can simply
make its own selection to address a vast class of possible problems.

The paper is organized as follows. In Section 2, we formulate
the general problem under consideration, along with basic
assumptions used throughout the article. The considered control
problem is briefly discussed. Then, in Section 3, we introduce
the uncertain distributed parameter system representation of the
delay system which was originally proposed in Bresch-Pietri and
Krstic (2010) and emphasize its relationwith a prediction feedback
controller. In Section 4, we focus on delay on-line adaptation
scheme before, in Section 5, studying the structure of the proposed
Lyapunov proof of convergence to emphasize common points and
differences between the considered cases. Then, at the light of
this analysis, in Section 6, we employ an output feedback design.
In Section 7, we introduce parameter adaptation. In Section 8,
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we propose a disturbance rejection strategy. In Section 9, the
versatility of the proposed approach is underlined by a simulation
example covering various cases.
Notations

In the following, m, n and p are strictly positive integers, | · |

refers to theusual Euclideannormwhereas thenorms∥·∥ and∥·∥∞

are defined as

∥f (t)∥ =

 1

0
f (x, t)2dx, f : (x, t) ∈ [0; 1] × R+ → R

∥f ∥∞ = sup
θ̂∈Π

|f (θ̂)|, f : Π → Rl (l ∈ N∗).

The matrix norm is defined, for M ∈ Ml(R) (l ∈ N∗), as |M| =

sup|x|≤1 |Mx|.
For sake of analysis, several positive constants M1, . . . ,M11,

two functions f and g and a functional V0 are introduced (and
redefined) in each section.

2. Problem statement

We consider the following potentially open-loop unstable
linear delay system

Ẋ(t) = A(θ)X(t) + B(θ)[U(t − D) + d] (1)
Y (t) = CX(t), (2)

where Y ∈ Rm, X ∈ Rn and U is a scalar input. D > 0 is an un-
known (potentially long) constant delay, d is a constant input dis-
turbance andwe assume that the systemmatrix A(θ) and the input
vector B(θ) are linearly parametrized under the form

A(θ) = A0 +

p
i=1

Aiθi and B(θ) = B0 +

p
i=1

Biθi, (3)

where θ is a constant parameter belonging to a convex closed set
Π = {θ ∈ Π |Rp(θ) ≤ 0} ⊂ Rp, where P : Rp

→ R is a smooth
convex function.

The control objective is to have system (1)–(2) track a given
constant set point Y r despite uncertainties on the delay D and
several other difficulties the systemmay encounter: (i) uncertainty
on θ , (ii) unmeasured state X of the plant, (iii) unknown input
disturbance d. Each of these situations represents a different
challenge and calls for the introduction of some sort of adaptation
(in practice an estimate). This paper successively addresses the
three presented problems separately. Each of them is theoretically
studied, through a formal proof of convergence. For applications, it
is certainly necessary to combine someof the proposed techniques.
Convergence of every possible combination is not in the scope of
this paper. We refer the interested reader to some previous works
(Bresch-Pietri, Chauvin, & Petit, 2010, 2011a,b) where several
combinations have been studied, both theoretically and practically
on industrial applications. In particular, one theoretical question of
interest is the combination of unknown parameter with constant
disturbance rejection.

Following (Bresch-Pietri & Krstic, 2009), several assumptions
are formulated. It is considered that they hold throughout the
paper. The first two yieldwell-posedness of the problem,while the
last one serves in the Lyapunov analysis.

Assumption 1. The setΠ is known and bounded. An upper bound
D̄ and a lower bound D > 0 of the delay D are known.

Assumption 2. For a given set point Y r , there exists known
functions X r(θ) and U r(θ) continuously differentiable in the

parameter θ ∈ Π which satisfy, for all θ ∈ Π ,

0 = A(θ)X r(θ) + B(θ)U r(θ) (4)

Y r
= CX r(θ). (5)

Assumption 3. The pair (A(θ), B(θ)) is controllable for every θ ∈

Π and there exists a triple of vector/matrix functions (K(θ), P(θ),
Q (θ)) such that, for all θ ∈ Π ,

(i) P(θ) and Q (θ) are positive definite and symmetric
(ii) the following Lyapunov equation is satisfied

P(θ)(A + BK)(θ) + (A + BK)(θ)TP(θ) = −Q (θ)

(iii) (K , P) ∈ C1(Π)2 and Q ∈ C0(Π).

Assumption 4. The following quantities are well-defined

λ = inf
θ∈Π

min {λmin(P(θ)), λmin(Q (θ))}

λ = sup
θ∈Π

λmax(P(θ)).

Only one of these assumptions is restrictive: Assumption 3
requires the equivalent delay-free form of the system (1)–(2) to
be controllable. This is a reasonable assumption to guarantee the
possibility of regulation about the constant reference Y r . As a final
remark, we wish to stress that neither the considered reference
U r , nor the state reference X r depend on time or delay, because
the reference Y r is constant. This point is important in the control
design.

3. Distributed input estimate

We start our analysis by introducing the distributed input
u(x, t) = U(t + D(x − 1)), x ∈ [0, 1]. The plant (1)–(2) can be
represented under the form

Ẋ(t) = A(θ)X(t) + B(θ)[u(0, t) + d] (6)
Dut(x, t) = ux(x, t) (7)
u(1, t) = U(t) (8)
Y = CX(t) (9)

where the delay is accounted for by the transport equation (a
first-order hyperbolic PDE) whose speed of propagation is 1/D.
Unfortunately, because this speed is uncertain, even if the applied
input U(t) is fully known, one cannot deduce the value of u(x, t)
for each x ∈ [0, 1] from it. Consequently, if this distributed input
is not measured (which is seldom the case in applications), one
needs to introduce an estimate û(x, t) = U(t + D̂(t)(x − 1)) of
the distributed input, using an estimate D̂ of the delay,

D̂(t)ût(x, t) = ûx(x, t) +
˙̂D(t)(x − 1)ûx(x, t) (10)

û(1, t) = U(t). (11)

These elements above have been presented in the paper Bresch-
Pietri and Krstic (2010) and are the base of the following proposed
methodology. They are represented as gray blocks in Fig. 1.

As will appear in Section 5.4.2, the Lyapunov-based synthesis of
the delay update law introduced in Bresch-Pietri and Krstic (2009)
and Krstic and Bresch-Pietri (2009) cannot be done in this context,
i.e. without the knowledge of the distributed input u. Instead, to
improve the delay estimation, one can use an optimization-based
update law (e.g. gradient methods) or exploit delay stochastic
properties, in the sense of the methods presented in O’Dwyer
(2000). These techniques are shown here to be compliant with
the proposed adaptive scheme, but at the expense of extra
assumptions bearing on the delay estimate initialization (required
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Fig. 1. The proposed adaptive control scheme. The closed-loop algorithm still uses a prediction-based control law jointly with distributed parameters, i.e. the estimated
waiting line (in gray, Section 3 also presented in Bresch-Pietri and Krstic (2010)). According to the context, it can use a combination of the remaining blocks (in white),
namely a delay estimate update law (Section 4) or a parameter estimate one (Section 7) or a system state observer (Section 6) or a disturbance estimate (Section 8). This
may also requires the computation of the transformed state of the actuator.

to be close enough to the unknown delay value). In this context,
one might as well prefer to choose a constant delay estimate.
This is why (besides pedagogical reasons), in the following, we
present first and separately a control strategy using a varying delay
estimate and choose it as constant after that.

When D, d and θ are perfectly known and X is measured, the
following controller (see Artstein, 1982 and Smith, 1959) achieves
asymptotic stabilization of system (1) toward 0

U(t) = KXP(t + D) − d

= K

eADX(t) +

 t

t−D
eA(t−s)BU(s)ds


− d. (12)

This controller can be viewed as a delay-version of the delay-free
controllerU(t) = KX(t)−d, where XP(t+D) should be understood
as a D-units of time ahead prediction of the system state, starting
from X(t) as initial condition, and driven by the control history
over the D-units of time window. The presence of the term d aims
at counteracting the input bias in (1).

This prediction control has been interpreted in Krstic (2008)
as the result of a backstepping transformation of the transport
equation2 (7) and systematic Lyapunov tools have been used on
it, to analyze the asymptotic stability of input time-delay systems
(e.g. in Bresch-Pietri & Krstic, 2009 and Bresch-Pietri et al., 2010).
These are the elements we propose to develop further. In the
following, applying the certainty equivalence principle, we employ
different versions of the controller (12), depending on the case
under consideration, jointly with the corresponding backstepping
transformation of the distributed input.

Finally, we introduce several error variables used below

X̃(t) = X(t) − X r(θ̂) (13)

e(x, t) = u(x, t) − ur(θ̂) (14)

ê(x, t) = û(x, t) − ur(θ̂) (15)

ẽ(x, t) = u(x, t) − û(x, t). (16)

2 This transformation converts the plant (6)–(9) into the target system Ẋ(t) =

(A + BK)X(t) + Bw(0, t), Y (t) = CX(t)Dwt (x, t) = wx(x, t) with the boundary
condition w(1, t) = 0.

In details, (13) represents the tracking errors, (14) and (15) are
the distributed input tracking errors, and, (16) is the distributed
input estimation error. These quantities characterize (possibly only
partially, depending on the considered case) both the system state
and the control performances.

We now pursue with a first case that we treat in details.

4. Control strategy with time-delay on-line update law

In this section, we focus on the delay estimation and its
integration in the proposed prediction-based control. With this
aim in view,we assumehere that both θ and d are known (d = 0 for
sake of simplicity, as it can be easily compensated for) and that X is
measured. For sake of conciseness, we denote A = A(θ), B = B(θ)

and so on for every quantity depending on θ̂ = θ .
The main result of this section (Theorem 1) is based on

Conditions 1 and 2 presented below, which allow to consider a
relatively general delay update law.

4.1. Control design

Following (12) and the certainty equivalence principle, we
employ the control law

U(t) = U r
− KX r

+ KD̂(t)
 1

0
eAD̂(t)(1−x)Bû(x, t)dx

+ KeAD̂(t)X(t) (17)

where the update law of the delay estimate is characterized by the
following ‘‘growth condition’’.

Condition 1. There exists positive constants γD > 0 andM > 0 such
that
˙̂D(t) = γDProj[D,D̄]

{τD(t)}

|τD(t)| ≤ M

|X̃(t)|2 + ∥e(t)∥2

+
ê(t)2 +

êx(t)2
where Proj[D,D̄] is the standard projection operator on the interval
[D, D̄].
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Condition 2. There exists positive constants γD > 0 andM > 0 such
that
˙̂D(t) = γDProj[D,D̄]

{τD(t)}

∀t ≥ 0, τD(t)D̃(t) ≥ 0 and |τD(t)| ≤ M

where Proj[D,D̄] is the standard projection operator on the interval
[D, D̄].

The following result can be found in a less general form in the
seminal paper Bresch-Pietri and Krstic (2010). Despite the fact that
this paper only addresses the stabilization problem of the plant,
the main difference is the form of the employed delay update law,
as Bresch-Pietri and Krstic (2010) only proposes a particular one,3
whereas both Conditions 1 and 2 allow to consider a large amount
of it. This more general result serves as prototype for the rest of the
article.

Theorem 1. Consider the closed-loop system consisting of (6)–(9),
the control law (17), with the estimate actuator state (10)–(11) with
a delay update law satisfying either Condition 1 or Condition 2. Let us
define

Γ1(t) = |X̃(t)|2 + ∥e(t)∥2
+
ê(t)2 +

êx(t)2 + D̃(t)2.

Then, there exists γ ∗ > 0, R > 0 and ρ > 0 such that, if 0 < γD <
γ ∗ and if the initial state satisfies Γ1(0) < ρ then

∀t ≥ 0, Γ1(t) ≤ RΓ1(0) (18)

Y (t) →
t→∞

Y r , X(t) →
t→∞

X r and U(t) →
t→∞

U r . (19)

Condition 1 allows to update the delay estimate while guarantee-
ing the stability property (18) of the controller. This condition can-
not be checked directly, as some of the signals involved in the
upper bound are in fact unavailable. For strict implementability,
a constructive choice could be to satisfy the more restrictive as-
sumption τD(t) ≤ M


|X̃(t)| +

ê(t)2 +
êx(t)2. On the other

hand, Condition 2 allows to consider more sharp update laws pro-
vided that they point in the direction of estimation improvement,
which is consistent with numerous delay identification techniques
(see e.g. in O’Dwyer, 2000).

In a nutshell, employing a time-delay on-line update-law
satisfying Condition 2 would hopefully provide an identification
of the unknown delay and then allow a larger leeway for control
(i.e. advanced feedforward strategies). Condition 1 would then, in
this context, ensure that small computational errors in the delay
update law do not jeopardize the stability of the controller.

For both cases, Theorem 1 requires this delay update law to
be slow enough (γD < γ ∗) not to interfere maliciously with the
controller.

Theorem 1 also introduces a functional Γ1, which evaluates
the system error. Equivalently, the second condition (Γ1(0) being
sufficiently small) requires that, initially, each of the state variables
are sufficiently close to their corresponding trajectories (namely,
X r ,U r and the unknown delay D). In particular, one can notice the
presence of the spatial derivative of the estimate queue êx in the
statement. Indeed, this quantity is involved in the state variables
dynamics presented below, as a result of the estimation of the
distributed input.

3 This particular delay update law originates from the case where the (infinite)
state of the transport PDE is known, applying the certainty equivalence principle.
In the case of regulation, this update law can be expressed as

τD(t) = −

 1

0
(1 + x)ŵ(x, t)KeAD̂(t)xdx


AX̃(t) + Bê(0, t)


which can be shown to satisfy Condition 1.

4.2. Lyapunov analysis

In the following, we use the backstepping transformation of the
actuator state, satisfying a Volterra integral equation of the second
kind,

ŵ(x, t) = ê(x, t) − KD̂(t)
 x

0
eAD̂(t)(x−y)Bê(y, t)dy

− KeAD̂(t)xX̃(t) (20)

jointly with the inverse transformation

ê(x, t) = ŵ(x, t) + KD̂(t)
 x

0
e(A+BK)D̂(t)(x−y)Bŵ(y, t)dy

+ Ke(A+BK)D̂(t)xX̃(t) (21)

designed to fulfill the boundary condition ŵ(1, t) = 0, from the
chosen control law (17). This property is suitable for Lyapunov
analysis and motivates the definition of the following functional
candidate

V1(t) = X̃(t)TPX̃(t) + b1D
 1

0
(1 + x)ẽ(x, t)2dx

+ b2D̂(t)
 1

0
(1 + x)ŵ(x, t)2dx

+ b2D̂(t)
 1

0
(1 + x)ŵx(x, t)2dx + D̃(t)2 (22)

where P is defined in Assumption 3 and b1,1 and b1,2 are positive
coefficients. The boundary conditions of the set (ẽ, ŵ, ŵx) are
handy through integrations by parts, involving the factor (1 + x)
under the integrals, to create bounding negative terms.

First, consider the dynamics of the variables involved in (22),
which can be written, using (20) and (21), as

˙̃X(t) = (A + BK)X̃(t) + Bẽ(0, t) + Bŵ(0, t) (23)

Dẽt(x, t) = ẽx(x, t) − D̃(t)f (x, t) −
˙̂D(t)D(x − 1)f 1(x, t) (24)

ẽ(1, t) = 0 (25)

D̂(t)ŵt(x, t) = ŵx(x, t) − D̂(t) ˙̂D(t)g(x, t)

− D̂(t)KeAD̂(t)xBẽ(0, t) (26)

ŵ(1, t) = 0 (27)

D̂(t)ŵxt(x, t) = ŵxx(x, t) − D̂(t) ˙̂D(t)gx(x, t)

− D̂(t)2KAeAD̂(t)xBẽ(0, t) (28)

ŵx(1, t) = D̂(t) ˙̂D(t)g(1, t) + D̂(t)KeAD̂(t)Bẽ(0, t) (29)

with the functions f and g expressed, thanks to (20) and (21), with
the set of variables (ẽ, ŵ, ŵx) as given in Appendix A. Taking a
time-derivative of V1 and using suitable integrations by parts, one
obtains with (23)–(29)

V̇1(t) = −X̃(t)TQ X̃(t) + 2X̃(t)TPB

ẽ(0, t) + ŵ(0, t)


+ b1


−
ẽ(t)2 − ẽ(0, t)2 − 2D̃(t)

×

 1

0
(1 + x)f (x, t)ẽ(x, t)dx

+ 2 ˙̂D(t)D
 1

0
(1 − x2)f (x, t)ẽ(x, t)dx


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+ b2


−
ŵ(t)

2 − ŵ(0, t)2

− 2D̂(t) ˙̂D(t)
 1

0
(1 + x)g(x, t)ŵ(x, t)dx

− 2D̂(t)
 1

0
(1 + x)KeAD̂(t)xBẽ(0, t)ŵ(x, t)dx



+ b2


2ŵx(1, t)2 − ŵx(0, t)2 −

ŵx(t)
2

− 2D̂(t) ˙̂D(t)
 1

0
(1 + x)gx(x, t)ŵx(x, t)dx

− 2D̂(t)2
 1

0
(1 + x)KAeAD̂(t)xBẽ(0, t)ŵx(x, t)dx


+ b2

˙̂D(t)
 1

0
(1 + x)[ŵ(x, t)2 + ŵx(x, t)2]dx

− 2D̃(t) ˙̂D(t).

The magnitude of the resulting non-negative terms can be
bounded. Indeed, using Young and Cauchy–Schwarz inequalities,
one can obtain the following inequalities, where M1, . . . ,M6 are
positive constants independent on initial conditions,

2X̃(t)TPB

ẽ(0, t) + ŵ(0, t)


≤

λmin(Q )

2
|X̃(t)|2 +

4 ∥PB∥2

λmin(Q )
(ẽ(0, t)2 + ŵ(0, t)2)

2
 1

0
(1 + x)|f (x, t)ẽ(x, t)|dx

≤ M1


|X̃(t)|2 +

ẽ(t)2 +
ŵ(t)

2 +
ŵx(t)

2
2
 1

0
(1 − x2)|f (x, t)ẽ(x, t)|dx

≤ M1


|X̃(t)|2 +

ẽ(t)2 +
ŵ(t)

2 +
ŵx(t)

2
2D̂(t)

 1

0
(1 + x)|g(x, t)ŵ(x, t)|dx

≤ M2


|X̃(t)|2 +

ŵ(t)
2 +

ŵx(t)
2

2D̂(t)
 1

0
(1 + x)

KeAD̂(t)xBẽ(0, t)ŵ(x, t)
 dx

≤ M3ẽ(0, t)2 +
ŵ(t)

2 /2

2ŵx(1, t)2

≤ M4


˙̂D(t)2


|X̃(t)|2 +

ŵ(t)
2 +

ŵx(t)
2+ ẽ(0, t)2


2D̂(t)

 1

0
(1 + x)|gx(x, t)ŵx(x, t)|dx

≤ M5


|X̃(t)|2 +

ŵ(t)
2 +

ŵx(t)
2 + ŵx(0, t)2


2D̂(t)2

 1

0
(1 + x)

KAeAD̂(t)xBẽ(0, t)ŵx(x, t)
 dx

≤ M6ẽ(0, t)2 +
ŵx(t)

2 /2.

Consequently, if one defines V0(t) = |X̃(t)|2+
ẽ(t)2+ŵ(t)

2+ŵx(t)
2, the previous equality yields

V̇1(t) ≤ −
λmin(Q )

2
|X̃(t)|2 −


b2 −

4 ∥PB∥2

λmin(Q )


ŵ(0, t)2

−


b1 −

4 ∥PB∥2

λmin(Q )
− b2M3 − b2M4 − b2M6


× ẽ(0, t)2 − b1

ẽ(t)2 −
b2
2

ŵ(t)
2 −

b2
2

ŵx(t)
2

+


b1|D̃(t)|M1 + b1D̄|

˙̂D(t)|M1 + b2|
˙̂D(t)|M2

+ b2M4
˙̂D(t)2 + b2M5|

˙̂D(t)| + 2b2|
˙̂D(t)|


V0(t)

− 2D̃(t) ˙̂D(t) − b2

1 − |

˙̂D(t)|M5


ŵx(0, t)2. (30)

To make the terms in ẽ(0, t)2 and ŵ(0, t)2 vanish, one can choose
the constant coefficients b1 and b2 such that b2 =

8∥PB∥2

λmin(Q )
and b1 >

b2
 1
2 + M3 + M4 + M6


The techniques to treat the remaining

non-negative terms are slightly depending on which condition is
satisfied (Condition 1 or Condition 2). We now distinguish the two
cases.

4.2.1. Condition 1
First, considering (20)–(21) and applying Young inequality, one

can establish the following inequalitiesê(t)2 ≤ r1|X̃(t)|2 + r2
ŵ(t)

2 (31)êx(t)2 ≤ r3|X̃(t)|2 + r4
ŵ(t)

2 + r5
ŵx(t)

2 (32)ŵ(t)
2 ≤ s1|X̃(t)|2 + s2

ê(t)2 (33)ŵx(t)
2 ≤ s3|X̃(t)|2 + s4

ê(t)2 + s5
êx(t)2 (34)

where r1, r2, r3, r4, r5, s1, s2, s3, s4 and s5 are positive constants.
Using (31) and (32), Condition 1 can be reformulated as (with
M1 > 0)

|
˙̂D(t)| ≤ γDMV0(t)

which yields, with η = min {λmin(Q )/2, b1, b2/2},

V̇1(t) ≤ −


η − b1|D̃(t)|M1 − 2|D̃(t)|γDM1


V0(t)

+ γDM

b2M2 + b1D̄M1 + b2M5 + 2b2


V0(t)2

+ b2M4γ
2
DM

2V0(t)3 − b2 (1 − γDMV0(t)M5) ŵx(0, t)2.

Further, we employ the following bound, where ε1 > 0,

|D̃(t)| ≤
ε1

2
+

1
2ε

(V1(t) − η1V0(t)) (35)

and obtain

V̇1(t) ≤ −


η − (b1M1 + 2γDM)


ε1

2
+

V1(t)
2ε1


V0(t)

−


(b1M1 + 2γDM1)

η1

2ε1
− γDM(b2M2 + b1D̄M1

+ b2M5 + 2b2) − b2M4γ
2
DM

2V0(t)

V0(t)2

− b2 (1 − γDMV0(t)M5) ŵx(0, t)2.

By choosing the parameter ε1 such that

ε1 < min


2η
b1M1 + 2γDM

×
η1(b1M + 2γDM)

2γDM(b2M2 + b1D̄M1 + b2M5 + 2b2)





Author's personal copy

D. Bresch-Pietri et al. / Automatica 48 (2012) 1536–1552 1541

and restricting the initial condition as

V1(0) < min

ε1


2η

b1M1 + 2γDM
− ε1


,

×
η1

b2M4γ
2
DM2


(b1M1 + 2γDM)

η1

2ε1
− γDM(b2M2

+ b1D̄M1 + b2M5 + 2b2)


,
η1

γDMM5


we conclude that there exists non-negative functions µ1 and µ2
such that

V̇1(t) ≤ −µ1(t)V0(t) − µ2(t)V0(t)2 (36)
and finally
∀t ≥ 0, V1(t) ≤ V1(0). (37)

4.2.2. Condition 2
Inequality (30) gives, together with (35)

V̇1(t) ≤ −


η − b1M1


ε1

2
+

V1(t)
2ε1


− γDM

× (b1D̄M1 + b2(M2 + γDMM4 + M5 + 2))


V0(t)

− b2 (1 − γDMM5) ŵx(0, t)2.
Consequently, by choosing the delay update gain γD and the
parameter ε1 such that

γD < min


η

M(b1D̄M1 + b2(M2 + MM4 + M5 + 2))
,

×
1

MM5
, 1


ε1

2
<

η − γDM(b1D̄M1 + b2(M2 + γDMM4 + M5 + 2))
b1M1 + 2γDM

and restricting the initial condition to satisfy

V1(0) < 2ε1


η − γDMb1D̄M1

b1M1
−

ε1

2

+
γDMb2(M2 + γDMM4 + M5 + 2)

b1M1


one can finally obtain

V̇1(t) ≤ −µ(t)V0(t) (38)
where µ is a non-negative function and consequently
∀t ≥ 0, V1(t) ≤ V1(0). (39)

4.2.3. Equivalence
Above, stability results for the Lyapunov function V1 have

been provided, in (37) and (39) respectively. In view of proving
Theorem 1, we now show the equivalence of the two functionals
V1 and Γ1, i.e. the existence of (a, b) ∈ R∗

+

2 such that, for t ≥

0, aV1(t) ≤ Γ1(t) ≤ bV1(t).
Using (31)–(34), one directly obtains this property as follows

Γ1(t) ≤ |X̃(t)|2 + 2
ẽ(t)2 + 3

ê(t)2 +
êx(t)2 + D̃(t)2

≤
max {1 + 3r1 + r3, 3r2 + r4, r5, 2}
min


λmin(P), b1,1D, b1,2D, 1

 V1(t)

V1(t) ≤ max

λmax(P) + 2s1b1D̄ + 2s3b2D̄,

× 4b1D + 2s2b1D̄ + 2s4b2D̄, 2s5b2D̄, 1

Γ1(t).

This gives the desired stability property (18) with R = b/a.

4.2.4. Convergence
One can now conclude the proof of Theorem 1, by applying

Barbalat’s lemma on the variables |X̃(t)|2 and Ũ(t)2. Integrating
(36) or (38) from 0 to +∞, one directly concludes that both
quantities are integrable. Further, from (23), one has

d|X̃(t)|2

dt
= 2X̃(t)T ((A + BK)X̃(t) + Bẽ(0, t) + Bŵ(0, t)).

From (37) or (39), it follows that |X̃(t)|,
ẽ(t) ,

ŵ(t)
 andŵx(t)

 are uniformly bounded. Then, with (31), we obtain the
uniform boundedness of

ê(t) and, consequently, of û(t). With
(17), we conclude that U(t) is uniformly bounded, and, therefore,
that ẽ(0, t) = U(t − D) − U(t − D̂(t)) is bounded for t ≥ D̄.
Further, from the definition (20), we get the uniform boundedness
of ŵ(0, t) for t ≥ D̄ and, finally, the one of d(|X̃(t)|2)/dt for t ≥ D̄.
Finally, we conclude, with Barbalat’s lemma, that X̃(t) → 0 as
t → ∞.

Similarly, one can obtain, from (17),

dŨ(t)2

dt
= 2Ũ(t)


KeAD̂(t) ˙̃X(t) + D̂(t)G0(t) + H0(t)


with

G0(t) = K

eAD̂(t)AX̃(t) +

 1

0
eAD̂(y)(1−y)B(y − 1)êx(y, t)dy

+

 1

0
(I + AD̂(t)(1 − y))eAD̂(t)(1−y)Bê(y, t)dy


H0(t) = K

 1

0
eAD̂(t)(1−y)Bêx(y, t)dy.

Using (32), we deduce from above that
êx(t) is uniformly

bounded. Therefore, it is straightforward to obtain the uniform
boundedness of G0 and H0 and the one of dŨ(t)2/dt , using
Assumption 1 and the previous arguments. Then, with Barbalat’s
Lemma, we conclude the Ũ(t) → 0 as t → ∞. This concludes the
proof of Theorem 1.

Some important comments can be made concerning the
previous proof. First, one can notice the key role played by the
transformed state of the actuator into the appearance of negative
bounding terms in the Lyapunov analysis. Besides, in this context,
the main difficulties result in the treatment of the delay update
law ˙̂D(t) and the delay estimate error D̃(t). Actually, these two
difficulties arise from the same fact: the dynamics of ẽ results in
a bilinear term (namely a D̃(t)ẽ(., t) term) which is well-known to
be difficult to handle in a Lyapunov design (Ioannou & Fidan, 2006)
(employed e.g. in Bresch-Pietri & Krstic, 2009 and Krstic & Bresch-
Pietri, 2009 in which this term is linear as ẽ(., t) is assumed to be
measured). The first difficulty is addressed by the formulation of
the Conditions 1 and 2. The second one implies both the definition
of the intermediate functional V0 and the restriction bearing upon
the initial condition. Further, a direct consequence is the necessity
to invoke Barbalat’s lemma to transform the stability result (18)
into the asymptotic convergence one (19).

5. Comments about the proof structure

Now that we have developed a proof of convergence for the
first case under consideration in this paper, we wish to outline its
structure, which will also guide the proof of the other cases. One
can notice above the following main steps:

(1) definition of a backstepping transformation w(., t) of the PDE
state, based on the certainty equivalence principle
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Table 1
Comparison of the presented results and the corresponding elements of proof.

Problem under consideration Error variables in the
Lyapunov analysis

Main technicality in the Lyapunov analysis Solution CV

Delay adaptation new block (D̂) X̃, ẽ, ŵ, ŵx, D̃ Bounding of | ˙̂D(t)| Formulation of Conditions 1 and 2 lo. & as.
Observer new block (X̂) X̃, 1X̂, ẽ, ŵ, ŵx Extra state variable Study of an extra Lyapunov equation gl. & exp.
Parameter adaptation new block (θ̂ ) X̃, ẽ, ŵ, ŵx, θ̃ Creation of error variables (completion of

non-vanishing terms)
Introduction of a parameter update law lo. & as.

Disturbance estimate new block (d̂) X̃, ẽ0, ŵ0, ŵ0,x, d̃ Additive disturbance estimate in the
control law

Incorporation of a double integral term
in the functional

gl. & as.

(In Table 1, ‘‘CV’’ stands for ‘‘convergence’’, ‘‘lo’’ for ‘‘local’’, ‘‘gl’’ for ‘‘global’’, ‘‘as’’ for ‘‘asymptotic’’ and ‘‘exp’’ for ‘‘exponential’’.).

(2) definition of a Lyapunov equation, involving a suitable set of
error variables and alternative spatial integral norms of some
of them

(3) setting of the corresponding differential error equations
(4) time-derivative of the Lyapunov equation and integration by

parts to create negative bounding terms
(5) bounding of the remaining positive error terms, using Young

and Cauchy–Schwarz inequality.

These are the common steps that are used through the paper, for
each considered case. The choice of the variables set in step (2) and
the bounding realized in step (5) are the most elaborate parts. In
particular, this last point is different in each of the contexts and
sections, due to specific difficulties that are listed in Table 1.

In the following sections, some of the steps listed above are
omitted or briefly introduced in the proofs, in order to reduce the
calculations.

6. Output feedback strategy

In this section, we treat a second case where it is assumed
that the system state X is not fully measured (as considered for
strict observation problems in Krstic & Smyshlyaev, 2008). We
design an output feedback controller. The considered problem is
relatively simple compared to the much complex case of delayed
stated variables (Bhat&Koivo, 1976;Watanabe&Ouchi, 1985). Our
design directly originates from the delay-compensation observer
form derived in Klamka (1982), Watanabe and Ito (1981), with an
input in the plant.

To do so, in the following, we assume that θ and d are known
(d = 0 for sake of simplicity). Further, the delay update law is again
simply chosen as constant (i.e. ˙̂D(t) = 0). For sake of conciseness,
we denote A = A(θ), B = B(θ) and so on for every quantity
depending on θ̂ (naturally chosen as θ ).

First, using the estimate waiting line introduced in (10)–(11),
we define the following observer of the system state

˙̂X(t) = AX̂(t) + Bû(0, t) − L(Y (t) − CX̂(t)) (40)

where the vector gain L is defined through the following additional
assumption.

Assumption 5. The pair (A, C) is observable and L ∈ Rn×m is a
stabilizing gain.

6.1. Controller and convergence result

Using again the certainty equivalence principle, we employ the
control law

U(t) = U r
− KX r

+ K

eAD̂X̂(t) + D̂

 1

0
eAD̂(1−y)Bû(y, t)dy


(41)

and introduce several additional error variables,

1X(t) = X(t) − X r , 1X̂(t) = X̂(t) − X r ,

X̃(t) = X(t) − X̂(t).

Theorem 2. Consider the closed-loop system, consisting of (6)–(9),
the control law (41) and the estimate plant (40). Define

Γ2(t) = |1X(t)|2 + |1X̂(t)|2 + ∥e(t)∥2

+
ê(t)2 +

êx(t)2 . (42)

Then, there exists δ∗ > 0, R > 0 and ρ > 0 such that, for any initial
conditions, provided that |D̃| < δ∗,

∀t ≥ 0, Γ2(t) ≤ RΓ2(0)e−ρt (43)

and, consequently, Y (t) → Y r and X̃(t) → 0 as t → ∞.

Comparing this result to Theorem 1, several remarks can be
formulated. First, one can notice that similar tools are introduced
in the two statements. In details, the functional Γ2 can be related
toΓ1 as it evaluates the system state, but, as could be expected, the
state observation error has been included in the functional Γ2. This
is consistent with the fact that we focus on a system state observer
design and keep the delay estimate as constant.

On the other hand, two main differences can be noticed: the
convergence is now global (provided that the delay estimate
is chosen close enough to the uncertain delay, which can be
understood here as a robustness property to delay mismatch) and
exponential. The reasons of these differences are detailed above.

6.2. Error variable dynamics and Lyapunov Analysis

Following along lines similar to the proof of the previous
result summarized in Table 1, we define the following Lyapunov
functional candidate

V2(t) = 1X̂(t)TP11X̂(t) + b0X̃(t)P2X̃(t)

+ b1D
 1

0
(1 + x)ẽ(x, t)2dx

+ b2D̂
 1

0
(1 + x)[ŵ(x, t)2 + ŵx(x, t)2]dx (44)

where b3,0, b3,1 and b3,2 are positive coefficients, (P1,Q1) =

(P,Q ) defined in Assumption 3 and the symmetric definite matrix
P2 satisfies the following Lyapunov equation, with Q2 a given
symmetric definite positive matrix,

P2(A + LC) + (A + LC)TP2 = −Q2.

The transformed state of the actuator is defined, as previously,
through the following Volterra integral equation

ŵ(x, t) = ê(x, t) − D̂
 x

0
KeAD̂(x−y)Bê(y, t)dy

− KeAD̂x1X̂(t) (45)

which satisfies the boundary property ŵ(1, t) = 0, taking into
account the control law (41). First,we consider this transformation,
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jointly with its inverse to obtain the dynamics of the variables
involved in (44)

˙̃X(t) = (A + LC)X̃(t) + Bẽ(0, t)

d1X̂
dt

= (A + BK)1X̂(t) + Bŵ(0, t) − LCX̃(t)

Dẽ(x, t) = ẽx(x, t) − D̃f (x, t)
ẽ(1, t) = 0

D̂ŵt(x, t) = ŵx(x, t) + D̂KeAD̂xLCX̃(t)
ŵ(1, t) = 0

D̂ŵxt(x, t) = ŵxx(x, t) + D̂2KAeAD̂xLCX̃(t)

ŵx(1, t) = −D̂KeAD̂LCX̃(t)

where the function f can be expressed, in terms of the (ŵ, ŵx)-
variables, and is given in Appendix B. Taking a time-derivative of
V2 and using suitable integrations by parts, one obtains

V̇2(t) = −1X̂(t)TQ11X̂(t) + 21X̂(t)TP1Bŵ(0, t)

− 21X̂(t)TP1LCX̃(t) + b0


− X̃(t)TQ2X̃(t)

+ 2X̃(t)P2Bẽ(0, t)


+ b1


−
ẽ(t)2 − ẽ(0, t)2

− 2D̃
 1

0
(1 + x)ẽ(x, t)f (x, t)dx


+ b2


−
ŵ(t)

2 − ŵ(0, t)2

+ 2D̂
 1

0
(1 + x)ŵ(x, t)KeAD̂xLCX̃(t)dx


+ b2


2ŵx(1, t)2 − ŵx(0, t)2 −

ŵx(t)
2

+ 2D̂2
 1

0
(1 + x)ŵx(x, t)KAeAD̂xLCX̃(t)dx


.

Choosing b2 ≥ 4|P1B|2/λ1, b0 ≥ 16 |P1LC |
2

λ1λ2
, one gets

V̇2(t) ≤ −
λ1

4
|1X̂(t)|2 −

b0λ2

4
|X̃(t)|2 − b1

ẽ(t)2
−


b1 −

2|P2B|2

λ2b0


ẽ(0, t)2 − b3,2

ŵ(t)
2

−
b2
2

ŵ(0, t)2 + 2b2ŵx(1, t)2 − b2
ŵx

2
− b2ŵx(0, t)2 + 2b1|D̃|

 1

0
(1 + x)|ẽ(x, t) ∥ f (x, t)|dx

+ 2b2D̂
 1

0
(1 + x)|KeAD̂xLCX̃(t)ŵ(x, t)|dx

+ 2b2D̂(t)2
 1

0
(1 + x)|KAeAD̂(t)xLCX̃(t)ŵx(x, t)|dx.

Applying Young and Cauchy–Schwarz inequalities, one can show
that there exist positive constantsM1,M2,M3 andM4 independent
on initial conditions such that

2
 1

0
(1 + x)|ẽ(x, t)||f (x, t)|dx

≤ M1


|1X̂(t)|2 +

ẽ(t)2 +
ŵ(t)

2 +
ŵx(t)

2
2D̂
 1

0
(1 + x)|KeAD̂xLCŵ(x, t)dx|

≤ M2|X̃(t)|2 +
ŵ(t)

2 /2

2ŵx(1, t)2 ≤ M3|X̃(t)|2

2D̂2
 1

0
(1 + x)|KAeAD̂xLCŵx(x, t)|dx

≤ M4|X̃(t)|2 +
ŵx(t)

2 /2.

One can use these inequalities to bound the resulting positive
terms. By choosing b0 ≥

8b2
λ2

(M2 + M3 + M4) and b1 ≥
2|P2B|2

λ2b0
,

we define the following quantities

V0(t) = |1X̂(t)|2 + |X̃(t)|2 +
ẽ(t)2

+
ŵ(t)

2 +
ŵx(t)

2 (46)
η = min {λ1/4, b0λ2/8, b1, b2/2}

and obtain

V̇2(t) ≤ −


η − b1M1|D̃|


V0(t).

Consequently, if we assume D̃ <
η

2b1M1
= δ∗ we finally conclude

that

V̇2(t) ≤ −
η

2
V0(t)

≤ −
ηV2(t)

2max

λmax(P1), b0λmax(P2), 2b1D, 2b2D̂

 .

This establishes the existence of ρ > 0 such that

∀t ≥ 0, V2(t) ≤ V2(0)e−ρt . (47)

6.2.1. Equivalence
In view of obtaining the exponential stability result stated

in Theorem 2, we prove that the two functionals Γ2 and V2
are equivalent. First, considering (45) and its inverse and apply-
ing Young inequality, one can establish inequalities similar to
(31)–(34), replacing X̃ with1X̂ , andwith newpositive constant co-
efficients r ′

1, r
′

2, r
′

3, r
′

4, r
′

5, s
′

1, s
′

2, s
′

3, s
′

4 and s′5. Using these inequali-
ties, one directly obtains

Γ2(t) ≤ 2|X̃(t)|2 + 3|1X̂(t)|2

+ 2
ẽ(t)2 + 3

ê(t)2 +
êx(t)2

≤
max


3 + 3r ′

1 + r ′

3, 3r
′

2 + r ′

4, r
′

5


min


λmax(P1) + b0λmax(P2), 2b1D̄, 2b2D̄

V2(t)

V2(t) ≤ max

λmax(P1) + 2b2D̄s′1 + 2b2D̄s′3, b0λmax(P2),

× 2b2D̄, 2b2D̄(s′2 + s′4), 2b2D̄s
′

5


Γ2(t).

Hence, one can obtain the existence of a > 0 and b > 0 such that
∀t ≥ 0, aV2(t) ≤ Γ2(t) ≤ bV2(t). Then, one easily gets, using (47),

Γ2(t) ≤ bV2(t) ≤ bV2(0)e−ρt
≤

b
a
Γ2(0)e−ρt

which gives the desired exponential convergence result, with R =

b/a. This concludes the proof of Theorem 2, without need to invoke
Barbalat’s lemma as the Lyapunov analysis directly provides the
asymptotic stability.

6.2.2. Main specificity and other comments
Themain challenge in this section has been the introduction of a

second error state variable, accounting for system state estimation
error. This additional variable is treated in the proof thanks to
a dedicated Lyapunov equation, highlighting the stability of its
internal dynamics.
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Actually, this stability is directly related to the global and
exponential convergence of the overall system. Namely, in
the previous section and the following ones, the existence of
estimation error variables, which were impossible to compensate,
motivates the definition of a ‘‘truncated’’ functional V0 to express
a restrictive condition upon the initial condition. The resulting
bound of the time-derivative of the Lyapunov functional is
then a function of this truncated functional, which cannot be
directly compared to the original Lyapunov one. Nevertheless,
in the present case, there is no such remaining estimation error
variables, as the error of system state estimation is naturally stable.
Therefore, the intermediate functional V0 defined in (46) is not
truncated and is directly equivalent to the Lyapunov functional V3.

More generally, the analysis is based on the definition of a
transformed actuator (step (1) in Section 5), already defined in
(20) and which is introduced here as (45). The desirable property
ŵ(1, t) = 0 holds, taking into account the control law (41). In the
two previous sections, this backstepping transformation is only a
generic Lyapunov tools to study stability,whereas, in the following,
it is explicitly used in the control design.

7. Control strategy with parameter adaptation

This section addresses the case of plant parameters adaptation
despite uncertainties on the delay. Severalworks (see Palmor, 1996
and more recently Evesque, Annaswamy, Niculescu, & Dowling,
2001, 2003, Niculescu & Annaswamy, 2003) have dealt with an
adaptive framework for input-delay systems, but a few have
simultaneously considered delay uncertainties. Lately, Zhou, Wen,
and Wang (2009) has proposed an approach in a similar context
and with comparable tools, but the developed feedback is not
prediction-based and does not aim at compensating the delay
effect.

Here, to present our control strategy in this framework, we
consider again that d ismeasured, ormore conveniently that d = 0,
for sake of simplicity, and that X ismeasured. Further, no particular
effort is made to update the delay estimate, that is kept constant
(i.e. ˙̂D(t) = 0, which trivially satisfies either Condition 1 or
Condition 2).

7.1. Controller and convergence result

Applying again the certainty equivalence principle to (12), we
employ here the control law

U(t) = U r(θ̂) − K(θ̂)X r(θ̂) + K(θ̂)


eA(θ̂)D̂X(t)

+ D̂
 1

0
eA(θ̂)D̂(1−x)B(θ̂)û(x, t)dx


(48)

where the parameter update law is chosen as

˙̂
θ(t) = γθProjΠ (τθ (t)) (49)

τθ,i(t) = h(t) × (AiX(t) + Biur(θ̂)) (50)

h(t) =
X̃(t)TP(θ̂)

b2
− D̂K(θ̂)

 1

0
(1 + x)


ŵ(x, t)

+ A(θ̂)D̂ŵx(x, t)

eA(θ̂)D̂xdx (51)

with γθ > 0, 1 ≤ i ≤ p and where the transformed estimate state
of the actuator satisfies the following Volterra integral equation of
the second kind

ŵ(x, t) = ê(x, t) − D̂
 x

0
K(θ̂)eA(θ̂)D̂(x−y)B(θ̂)ê(y, t)dy

− K(θ̂)eA(θ̂)D̂xX̃(t). (52)

In (51), the matrix P is the one considered in Assumption 3, the
constant b2 is chosen such that b2 ≥ 8 supθ∈Π |PB(θ)|2λ and ProjΠ
is the standard projector operator onto the convex set Π

ProjΠ {τθ } = τθ


I, θ̂ ∈ Π̊ or ∇θ̂PT τθ ≤ 0

I −
∇θ̂P∇θ̂PT

∇θ̂PT∇θ̂P
,

θ̂ ∈ ∂Π and ∇θ̂PT τθ > 0.

(53)

Theorem 3. Consider the closed-loop system consisting of (6)–(9),
the control law (48) and the update law defined through (49)–(51).
Define

Γ3(t) = |X̃(t)| + ∥e(t)∥2
+
ê(t)2 +

êx(t)2 + θ̃ (t)2. (54)

Then, there exists γ ∗ > 0, δ∗ > 0, R > 0 and ρ > 0 such that,
provided the initial state (X̃(0), e0, ê0, êx,0, θ̃ (0)) is such that Γ3(0)
< ρ , if |D̃| < δ∗ and if γθ < γ ∗, then

∀t ≥ 0 Γ3(t) ≤ RΓ3(0), (55)

lim
t→∞

Y (t) = Y r , lim
t→∞

X̃(t) = 0 and lim
t→∞

Ũ(t) = 0. (56)

Comparing this result to Theorem 1 (resp. Theorem 2), one can
observe that the parameter estimation error has been included in
the functional Γ3, instead of the delay estimation error in Γ1 (resp.
the state one in Γ2), which could have been expected.

Besides, both Theorems 1 and 3 state asymptotic and local
results (i.e. they require that, initially, each of the state variables
is sufficiently close to its corresponding set-point) and require to
upper bound the update gain (respectively of the delay estimate
and the parameter estimate). Finally, as in Theorem 2, the delay
estimate must be sufficiently close to the uncertain delay, which
can be interpreted as a robustness property to delay mismatch.

The main difference with the above statements lies in the
introduction of a parameter update law, based on the projector
(49)–(53). This operator, commonly found in adaptive schemes
(see Ioannou & Sun, 1996 or Ioannou & Fidan, 2006), is typical of
a Lyapunov adaptive design, which is here enabled thanks to the
backstepping transformation (52), as is shown in the following.

7.2. Error variable dynamics and Lyapunov Analysis

As previously, to take advantage on the introduced backstep-
ping transformation, we use an alternative functional to Γ3, which
is the Lyapunov–Krasovskii functional we consider,

V3(t) = X̃(t)TP(θ̂)X̃(t) + b1D
 1

0
(1 + x)ẽ(x, t)2dx

+ b2D̂
 1

0
(1 + x)ŵ(x, t)dx

+ b2D̂
 1

0
(1 + x)ŵx(x, t)dx + b2|θ̃ (t)|2/γθ

where b1 and b2 are positive constants. Before working with this
functional, we consider the dynamics of the involved variables,
using (52) and its inverse transformation which yields

˙̃X(t) = (A + BK)(θ̂)X̃(t) + B(θ̂)ŵ(0, t) + B(θ̂)ẽ(0, t)

+ ÃX(t) + B̃u(0, t) −
∂X r

∂θ̂

˙̂
θ(t) (57)

Dẽt(x, t) = ẽx(x, t) − D̃(t)f (x, t)
ẽ(1, t) = 0
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D̂ŵt(x, t) = ŵx(x, t) − D̂ ˙̂
θ(t)Tg(x, t) − D̂θ̃ (t)Tg0(x, t)

− D̂K(θ̂)eA(θ̂)D̂xB(θ̂)ẽ(0, t) (58)
ŵ(1, t) = 0

D̂ŵxt(x, t) = ŵxx(x, t) − D̂ ˙̂
θ(t)Tgx(x, t) − D̂θ̃ (t)Tg0,x(x, t)

− D̂2KA(θ̂)eA(θ̂)D̂xB(θ̂)ẽ(0, t) (59)

ŵx(1, t) = D̂ ˙̂
θ(t)Tg(1, t) + D̂θ̃ (t)Tg0(1, t)

+ D̂K(θ̂)eA(θ̂)D̂B(θ̂)ẽ(0, t) (60)

where Ã =
p

i=1 Aiθ̃i(t), B̃ =
p

i=1 Biθ̃i(t) and f , g and g0 are
defined in Appendix C.

Taking a time-derivative of V3, after suitable integration by
parts and using the update law (49)–(51), one can obtain

V̇3(t) ≤ −(λ|X̃(t)| + b1ẽ(0, t)2 + b1
ẽ(t)2 + b2ŵ(0, t)2

+ b2
ŵ(t)

2 + b2
ŵx(t)

2) + 2| ˙̂θ(t)|
P(θ̂)

∂X r

∂θ̂

 |X̃(t)|

+ 2b2|h(t)∥B̃∥ẽ(0, t) + ŵ(0, t) + K(θ̂)X̃(t)|

+ 2|X̃(t)TPB(θ̂)(ŵ(0, t) + ẽ(0, t))|

+ 2b1|D̃|

 1

0
(1 + x)|ẽ(x, t)∥f (x, t)|dx

+ b2


2D̂|

˙̂
θ(t)|

 1

0
(1 + x)|ŵ(x, t)||g(x, t)|dx

+ 2D̂|ẽ(0, t)|
 1

0
(1 + x)|ŵ(x, t)∥K(θ̂)eA(θ̂)D̂xB(θ̂)|dx


+ b2


2D̂|

˙̂
θ(t)|

 1

0
(1 + x)|ŵx(x, t)∥gx(x, t)|dx

+ 2D̂2
|ẽ(0, t)|

 1

0
(1 + x)|ŵx(x, t)∥KA(θ̂)eA(θ̂)D̂xB(θ̂)|dx


+ 2b2ŵx(1, t)2 +

p
i=1

|
˙̂
θ i(t)|

 ∂P

∂θ̂i


∞

|X̃(t)|2.

Further, with Young inequality, Cauchy–Schwarz’s inequality and
Agmon’s inequality ŵ(0, t)2 ≤ 4

ŵx(t)
2 (with the help of the

fact that ŵ(1, t)2 = 0), one can obtain the inequalities below.
The positive constants M1, . . . ,M10 are independent on initial
conditions and the functional V0 is defined as V0(t) = |X̃(t)|2 +ẽ(t)2 +

ŵ(t)
2 +

ŵx(t)
2.

2|h(t)∥B̃∥ẽ(0, t) + ŵ(0, t) + K(θ̂)X̃(t)|

≤ M1|θ̃ (t)|

V0(t) + ẽ(0, t)2


2|X̃(t)TPB(θ̂)(ŵ(0, t) + ẽ(0, t))|

≤
λ

2
|X̃(t)|2 +

4 ∥PB∥2
∞

λ
(ŵ(0, t)2 + ẽ(0, t)2)

2
 1

0
(1 + x)|ẽ(x, t) ∥ f (x, t)|dx ≤ M2V0(t)

2D̂
 1

0
(1 + x)|ŵ(x, t) ∥ g(x, t)|dx ≤ M3


V0(t) +

ŵ(t)


2D̂|ẽ(0, t)|
 1

0
(1 + x)|ŵ(x, t) ∥ K(θ̂)eA(θ̂)D̂xB(θ̂)|dx

≤ M4ẽ(0, t)2 +
ŵ(t)

2 /2

2D̂
 1

0
(1 + x)|ŵ(x, t) ∥ gx(x, t)|dx ≤ M5V0(t)

2D̂2
|ẽ(0, t)|

 1

0
(1 + x)|ŵx(x, t)||KA(θ̂)eA(θ̂)D̂xB(θ̂)|dx

≤ M6ẽ(0, t)2 +
ŵx(t)

2 /2

2ŵx(1, t)2

≤ M7|
˙̂
θ(t)|2 (V0(t) + 1)

+M8ẽ(0, t)2 + M9|θ̃ (t)|2

|X̃(t)|2 +

ŵx(t)
2 (61)

|
˙̂
θ(t)| ≤ γθM10


V0(t) + |X̃(t)| +

ŵ(t)
+

ŵx(t)
 . (62)

With these inequalities, the previous inequality yields, by choosing
b2,2 ≥

8∥PB∥2∞
λ

and defining M11 = 2
P∂X r/∂θ̂


∞

and M0 =

pmax1≤i≤p

∂P/∂θ̂i


∞

,

V̇3(t) ≤ −
λ

2
|X̃(t)|2 − b1

ẽ(t)2 −
b2
2

ŵ(0, t)2 −
b2
2

ŵ(t)
2

−
b2
2

ŵx(t)
2 + M0|

˙̂
θ(t)||X̃(t)|2 + M11|

˙̂
θ ||X̃(t)|

−


b1 − b2


1
2

+ M1|θ̃ (t)| + M4 + M6 + M8


ẽ(0, t)2

+ [b2M1|θ̃ (t)| + b1|D̃|M2]V0(t)

+ b2|
˙̂
θ(t)|


M3

V0(t) +

ŵ(t)
+ M5


V0(t) +

ŵx(t)


+ b2M7|
˙̂
θ(t)|2 (V0(t) + 1) + b2M9|θ̃ (t)|2V0(t).

To obtain a negative definite expression, we choose b1 > b2(1/2+

2M1 ∥θ∥∞ + M4 + M6 + M8) and define η = min

λ/2, b1, b2/2


.

Then, with the help of (62), the Young inequality |θ̃ (t)| ≤
ε2
2 +

1
2ε2

(V2(t) − η2V0(t)), involving ε2 > 0, yields

V̇3(t) ≤ −


η − b1M2|D̃| − γθn1(γθ ) − b2(M1 + 2M9 ∥θ∥∞)

×


ε2

2
+

1
2ε2

V2(t)


V0(t) −


η2b2,2
2ε2

(M1 + 2M9 ∥θ∥∞)

− γθn2(γθ ) − 5M7γθM10V0(t)


V0(t)2 (63)

where the function n1 and n2 are defined as n1(γθ ) = 2M10(M0 +

3M11 + 4M3 + 4M5 + 4γθM7M10) and n2(γθ ) = M10(M0+ 2M11 +

5M3 + 5M5 + 13M7γθM10). Consequently, if the delay estimate
error satisfies |D̃(t)| <

η

b1M2
, choosing the update gain γθ and the

parameter ε2 such that

γθ < γ ∗
= min


1,

η − b1M2|D̃|

n1(1)


(64)

ε2 < min


2(η − b1M2|D̃| − γθn1(γθ ))

b2(M1 + 2M9 ∥θ∥
2
∞

)
,

×
η2b2

2γθn2(γθ )
(M1 + 2M9 ∥θ∥∞)


and restricting the initial condition as

V3(0) ≤ min


ε2


2
η − b1M2|D̃| − γθn1(γθ )

b2(M1 + 2M9 ∥θ∥
2
∞

)
− ε2


,

× η2
η2b2(M1 + 2M9 ∥θ∥∞) − 2ε2γθn2(γθ )

10ε2M7γθM10


(65)
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one finally obtains the existence of two non-negative functions µ1
and µ2 such that

V̇3(t) ≤ −µ1(t)V0(t) − µ2(t)V0(t)2 (66)

and consequently

∀t ≥ 0, V3(t) ≤ V3(0). (67)

7.2.1. Equivalence and convergence result
To obtain the stability result stated in Theorem 3, similarly

to what was done in Sections 4.2.3 and 6.2.1, one can prove the
equivalence of the two functionals V2 andΓ2. This gives the desired
stability property (55).

Then, again, we conclude using Barbalat’s Lemma on the
variables |X̃(t)| and Ũ(t). Integrating (66) from 0 to +∞, it is
straightforward to get that both signals are square integrable. Then,
considering the following equations

d|X̃(t)|2

dt
= 2X̃(t)


A(θ)X(t) + B(θ)u(0, t) −

∂X r

∂θ̂

˙̂
θ


dŨ(t)2

dt
= 2Ũ(t)


K(θ̂)eA(θ̂)D̂ ˙̃X(t) +

p
i=1

˙̂
θ i(t)Gi(t) + H0(t)


where

Gi(t) =
∂K

∂θ̂i


eA(θ̂)D̂X̃(t) + D̂

 1

0
eA(θ̂)D̂(1−y)B(θ̂)

× ê(y, t)dy


+ K(θ̂)


D̂AieA(θ̂)D̂X̃(t)

+ D̂
 1

0
eA(θ̂)D̂(1−y)(AiD̂(1 − y)B(θ̂) + Bi)

× ê(y, t)dy − D̂
 1

0
eA(θ̂)D̂(1−y)B(θ̂)

dur

dθ̂i
(θ̂)dy


H0(t) = K(θ̂)

 1

0
eA(θ̂)D̂(1−y)B(θ̂)êx(y, t)dy

jointly with (67), one can conclude that both d|X̃(t)|2/dt and
dŨ(t)2/dt are uniformly bounded for t ≥ max


D, D̂


. Conse-

quently, one obtains, with Barbalat’s Lemma, that X̃(t) → 0 and
Ũ(t) → 0 as t → ∞.

7.2.2. Main specificity and other comments
As previously, the essence of the proof is based on the

backstepping transformation of the actuator state. Nevertheless,
contrary to the proof of Theorem 1, the present proof uses
an actual Lyapunov design of the parameter update law. In
details, the (X̃, ŵ, ŵx)-dynamics (57)–(59) has introduced bilinear
parameterizations of the form θ̃i(t)(AiX(t) + Biu(0, t)) (for 1 ≤

i ≤ p). Because of the presence of the unknown term u(0, t),
it is impossible to exactly cancel these terms via the parameter
update law. Yet, one can create vanishing terms, namely e(0, t) by
incorporating the control reference ur(θ̂) in the parameter update
law, as is done in (50). Because these terms arise in the three
dynamics, in turn X̃, ŵ(., t) and ŵx(., t) appear in (51).

One important point to notice is that this creation of vanishing
terms cannot be directly applied to a non-constant trajectory.
Indeed, in this context, the reference distributed input ur(x, t, θ̂ )
does depend explicitly on time and space. Then, the quantity
ur(0, t, θ̂ ) is unknown and cannot be used in the parameter update
law like is done above.

One parameter estimation error term is also present inside
ŵx(1, t)2, as (60) points it out. Its quadratic form is inconsistent
with a Lyapunov design. Consequently, its treatment requires the
introduction of the intermediate function V0 and the reduction on
the initial condition. The treatment of the delay estimation error D̃
directly yields the condition stated in Theorem 3.

The main calculus difficulty is generated by the appearance
of cubic terms, due again to the quantity ŵx(1, t)2. Different
bounds can be used to express them in a polynomial form in the
V0 variables. The bounds presented in (63) have been relatively
roughly chosen. Consequently, the proposed expression of the
bound for the update gain γ ∗ (64) and for the initial condition (65)
are not the least conservative ones.

8. Input disturbance rejection

In this section, we focus on the compensation of a constant
unknown bias acting on the system input. Recently, a certain
number of papers have dealt with complex external disturbances
for linear disturbances on delay systems (Pyrkin, Smyshlyaev,
Bekiaris-Liberis, & Krstic, 2010a,b), even in a nonlinear context
(Bobtsov, Kolyubin, & Pyrkin, 2010). Nevertheless, these works do
consider the delay value as known. We aim here at giving some
directions for filling this gap, considering the simple case of a
constant disturbance.

Besides, we assume here that the system state X is measured
and that θ is known. Further, the delay estimate is again kept
constant. For sake of conciseness, we denote A = A(θ), B = B(θ)
and so on for every quantity depending on θ .

8.1. Controller and convergence result

To reject the disturbance d, we introduce a dedicated estimate
in the control law

U(t) = U0(t) − d̂(t)
U0(t) = U r

− KX r
+ KeAD̂X(t)

+ KD̂
 1

0
eAD̂(1−x)Bû0(x, t)dx

(68)

and define the corresponding distributed actuator corresponding
to the control prediction part U0, namely, for x ∈ [0, 1] and t ≥

0, u0(x, t) = U0(t +D(x−1)), û0(x, t) = U0(t + D̂(x−1)), ê0(x, t)
= û0(x, t) − U r and ẽ0(x, t) = u0(x, t) − û0(x, t). The estimate d̂
is chosen as

˙̂d(t) = γdτd(t) (69)

τd(t) =
X̃(t)TPB

b2
− D̂

 1

0
(1 + x)[ŵ0(x, t)

+ AD̂ŵ0,x(x, t)]KeAD̂xBdx. (70)

Theorem 4. Consider the closed-loop system consisting of (6)–(9)
and the control law (68) with (69)–(70). Define

Γ4(t) = |X̃(t)|2 + ∥e0(t)∥2
+
ê0(t)2 +

ê0,x(t)2 + d̃(t)2

+

 t

t−D

 t

s


|X̃(r)|2 +

ê0(r)2 +
ê0,x(r)2 drds.

Then, there exists δ∗ > 0 and γ ∗ > 0 such that, provided that |γd|

< γ ∗ and |D̃| < δ∗,

∀t ≥ 0, Γ4(t) ≤ RΓ4(0),
lim
t→∞

X(t) = X r and lim
t→∞

U(t) = U r .
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The previous theorem gives a global but asymptotic conver-
gence (except from the delay estimation error which is required
to be sufficiently small). The disturbance estimate update law is
chosen through a Lyapunov design, as in the previous section. It is
consistent with the well-known result that, for a linear system, an
integral stabilizing controller rejects any disturbance (see Kailath,
1980). In other words, the delay-free form of the system is stabi-
lized by the X̃-part of the update law (69)–(70), whereas the rest of
the update law accounts for the delay existence. One can observe
the similarity between this update law and the one proposed in
Section 7 in (49)–(51), as in the two cases the estimate errors have
the same impacts in the dynamics. Themain difference is the addi-
tion of a double integral term in the functional Γ4. This term does
not help to characterize the system state, as it is more or less re-
dundant with the first one, but reveals necessary in the Lyapunov
analysis, as will appear below. Besides, an update gain limitation is
still present and impacts on the integrator gain.

8.2. Error variable dynamics and Lyapunov Analysis

Before working with a Lyapunov–Krasovskii functional, we
introduce again the backstepping transformation of the actuator
state

ŵ0(x, t) = ê0(x, t) − D̂
 x

0
KeAD̂(x−y)Bê0(y, t)dy

− KeAD̂xX̃(t). (71)

Using this transformation, (6) can now be expressed as

˙̃X(t) = (A + BK)X̃(t) + B

ẽ0(0, t) + ŵ0(0, t)


+ Bd̃(t) + B


d̂(t) − d̂(t − D)


. (72)

In details, (72) can now be viewed as the result of four distinct
factors: (i) the stabilized dynamics (the A + BK -term), (ii) the
mismatch between the delay and its estimate (namely Bẽ(0, t)),
(iii) the mismatch between the disturbance and its estimate,
(iv) the delay effects over the disturbance rejection (the non-
synchronization between the estimate and the plant). Now, define
the following Lyapunov–Krasovskii functional

V4(t) = X̃(t)TPX̃(t) +
b2
γd

d̃(t)2 + b1D

×

 1

0
(1 + x)ẽ0(x, t)2dx + b2D̂

 1

0
(1 + x)ŵ0(x, t)2dx

+ b2D̂
 1

0
(1 + x)ŵ0,x(x, t)2dx

+ b3

 t

t−D

 t

s


|X̃(r)|2 +

ŵ0(r)
2 +

ŵ0,x(r)
2 drds.

Considering (71) and its inverse transformation

ê0(x, t) = ŵ0(x, t) + D̂
 x

0
Ke(A+BK)D̂(x−y)Bŵ0(y, t)dy

+ Ke(A+BK)D̂xX̃(t)

the actuators dynamics can be written as

Dẽ0,t(x, t) = ẽ0,x(x, t) − D̃f (x, t)
ẽ(1, t) = 0

D̂ŵ0,t(x, t) = ŵ0,x(x, t) − D̂KeAD̂xB

ẽ0(0, t) + d̃(t)

+ d̂(t) − d̂(t − D)


ŵ(1, t) = 0

D̂ŵ0,xt(x, t) = ŵ0,xx(x, t) − D̂2KAeAD̂xB[ẽ0(0, t) + d̃(t)
+ d̂(t) − d̂(t − D)]

ŵx(1, t) = D̂KeAD̂B

ẽ(0, t) + d̃(t) + d̂(t) − d̂(t − D)


where the function f is given in Appendix D. Then, taking a time-
derivative of V4 and using suitable integrations by parts, one can
get

V̇4(t) = −X̃(t)TQ X̃(t) + 2X̃(t)TPB[ẽ0(0, t) + ŵ0(0, t)]

+ 2X̃(t)TPB

d̂(t) − d̂(t − D)


+

2b2
γD

d̃(t)

τd(t) −

˙̂d(t)


+ b1


−ẽ0(0, t)2 −

ẽ0(t)2
− 2D̃

 1

0
(1 + x)ẽ0(x, t)f (x, t)dx


+ b2


−ŵ0(0, t)2

−
ŵ0(t)

2 − 2D̂
 1

0
(1 + x)KeAD̂xB[ẽ0(0, t)

+ d̂(t) − d̂(t − D)]ŵ0(x, t)dx


+ b2


2ŵ0,x(1, t)2

− ŵ0,x(0, t)2 −
ŵ0,x(t)

2 − 2D̂2
 1

0
(1 + x)KAeAD̂xB

× [ẽ0(0, t) + d̂(t) − d̂(t − D)]ŵ0,x(x, t)dx



+ b3


−

 t

t−D


|X̃(r)|2 +

ŵ0(r)
2 +

ŵ0,x(r)
2 dr

+D

|X̃(t)|2 +

ŵ0(t)
2 +

ŵ0,x(t)
2. (73)

Further, observing that d̂(t) − d̂(t − D) = γd
 t
t−D τd(s)ds jointly

with the definition of τd (70) and using Cauchy–Schwarz inequal-
ity and Young inequality, one can obtain the following inequalities
on the non-negative terms of (73)

2|X̃(t)TPB[ẽ0(0, t) + ŵ0(0, t) + d̂(t) − d̂(t − D)]|

≤
λmin(Q )

2
|X̃(t)|2 +

4|PB|2

λmin(Q )
[ẽ0(0, t)2 + ŵ0(0, t)2]

+ γdM1

 t

t−D


|X̃(r)|2 +

ŵ0(r)
2 +

ŵ0,x(r)
2 dr

2
 1

0
(1 + x)|ẽ0(x, t)||f (x, t)|dx

≤ M2


|X̃(t)|2 +

ẽ0(t)2 +
ŵ0(t)

2 +
ŵ0,x(t)

2
2D̂
 1

0
(1 + x)KeAD̂xB[ẽ0(0, t) + d̂(t) − d̂(t − D)]ŵ0(x, t)dx


≤
ŵ0(t)

2 /2 + M3ẽ0(0, t)2

+ γdM3

 t

t−D


|X̃(r)|2 +

ŵ0(r)
2 +

ŵ0,x(r)
2 dr

2ŵ0,x(1, t)2 − ŵ0,x(0, t)2

≤ M4ẽ0(0, t)2

+ γdM5

 t

t−D


|X̃(r)|2 +

ŵ0(r)
2 +

ŵ0,x(r)
2 dr
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2D̂2
 1

0
(1 + x)KAeAD̂x[ẽ0(0, t) + d̂(t) − d̂(t − D)]ŵ0,x(x, t)dx


≤
ŵ0,x(t)

2 /2 + M6ẽ0(0, t)2

+ γdM6

 t

t−D


|X̃(r)|2 +

ŵ0(r)
2 +

ŵ0,x(r)
2 dr.

With these inequalities and choosing b2 ≥
8|PB|2

λmin(Q )
, then (73) yields

V̇4(t)

≤ −
λmin(Q )

2
|X̃(t)|2 −

b2
2

ŵ0(0, t)2

−


b1 −

b2
2

− b2(M3 + M4 + M6)


ẽ0(0, t)2

− b1
ẽ0(t)2 −

b2
2

ŵ0(t)
2 −

b2
2

ŵ0,x(t)
2

+ b1|D̃|M2


|X̃(t)|2 +

ẽ0(t)2 +
ŵ0(t)

2 +
ŵ0,x(t)

2
+ b3


D

|X̃(t)|2 +

ŵ0(t)
2 +

ŵ0,x(t)
2

−

 t

t−D


|X̃(r)|2 +

ŵ0(r)
2 +

ŵ0,x(r)
2 dr

+ γd (M1 + b2(M3 + M5 + M6))

×

 t

t−D


|X̃(r)|2 +

ŵ0(r)
2 +

ŵ0,x(r)
2 dr.

By choosing b1 > b2 (1/2 + M3 + M4 + M6) and defining M7 =

M1 + b2(M3 + M5 + M6) jointly with

V0,1(t) = |X̃(t)|2 +
ẽ0(t)2 +

ŵ0(t)
2 +

ŵ0,x(t)
2

V0,2(t) =

 t

t−D


|X̃(r)|2 +

ŵ0(r)
2 +

ŵ0,x(r)
2 dr

η = min {λmin(Q )/2, b1, b2/2}

one gets

V̇4(t) ≤ −(η − b3D)V0,1(t) + b1|D̃(t)|M2V0,1(t)
− (b3 − γdM7)V0,2(t).

Consequently, if b3 = γdM7, if the update gain γd is chosen such
that γd =

η

2D̄M7
and if |D̃| < δ∗

=
η

4b1M2
, one concludes

∀t ≥ 0, V̇4(t) ≤ −
η

4
V0,1(t) (74)

and, finally, that ∀t ≥ 0, V4(t) ≤ V4(0).

8.2.1. Convergence result
From there, to obtain the stability result stated in Theorem 4,

we apply the same arguments as in Sections 4 and 7. This proof is
omitted.

8.2.2. Main specificity and other comments
Details of the proof are more or less similar to the ones given in

previous sections. Here, as in Section 7, the disturbance estimate
is chosen via a Lyapunov design. The main difference relies on the
appearance of a desynchronized term d̂(t) − d̂(t − D) due to the
additive form of the controller (68), which implies the introduction
of a double integral term to treat this mismatch. Further, one point
to notice is that the disturbance estimate converge to the unknown
but constant disturbance.

9. Illustrative example

In this section, to illustrate the merits, the practical interest
and the feasibility of the proposed adaptive control scheme, we
consider an open-loop unstable dynamics, thatwewish to regulate
around the set-point Y r

= 1. It is given under the following state-
space realization (see Huang & Lin, 1995 and Huang & Chen, 1997,
where the original transfer function is studied)

Ẋ(t) =

0
1
aT

1
a − T
aT

 X(t) +

 k
aT
0


[U(t − D) + d] (75)

Y (t) = (0 1) X(t) (76)

with a = 5, T = 2.07, k = 1, d = 0.5 and the delay D = 0.939 is
highly uncertain. Assuming that k is known (the static gain can be
easily identified), the previous system can be expressed under the
linearly parametrized form (3) with the parameter θ =

1
aT (1 a−

T )T ∈ R2. The references corresponding to the output set-point Y r

are X r(θ) = [−θ2 1]T Y r and U r(θ) = −Y r . By defining [D, D̄] =

[0.8, 1.1] and Π = [0.05, 0.15] × [0.2, 0.4], one can easily check
that the assumptions stated in Section 2 are satisfied.

For tutorial purposes, we illustrate the cases treated in this
paper. This yields the control structure reported in Fig. 1.

9.1. Delay adaptation

For now, we consider that (X, θ, d) is measured/known and
focus on the design of a delay update law satisfying Condition 2.
We define the following cost function

φ : [0, +∞) × [D, D̄] → R,

(t, D̂) → |XP(t, D̂) − X(t)|2

=

eA(t−D̂)X(D̂) +

 t

D̂
eA(t−s)BU(s − D̂)ds − X(t)

2
where XP(t, D̂) is a t-units of time prediction if the system state,
starting from X(D̂) as initial condition and assuming that the actual
delay value is D̂(t). Then, using a steepest descent algorithm, one
can take

τD(t) = −γD(XP(t, D̂) − X(t)) ×
∂XP

∂D̂
(t, D̂) (77)

∂XP

∂D̂
= eAtBU(0) − BU(t − D̂) −

 t

D̂
AeA(t−τ)BU(τ − D̂)dτ

where these expressions are directly implementable.4 This choice
is based on the comparison of two versions of a signal, the
one corresponding to the unknown delay D and the other to
the controlled delay D̂(t). It provides an accurate estimation of
the unknown delay provided that the initial delay estimate is
sufficiently close to the true value. In details, this condition, which
is compliant with the one stated in Theorem 1, guarantees that
no extraneous local minimum interferes with the minimization
process.

The simulation results are provided in Fig. 2. The tracked
trajectory is a 10 s-periodic signal, arbitrarily chosen to highlight
transient behaviors. Indeed, one can notice that the delay estimate

4 Themost tricky point arise while implementing the integral term. This problem
has been widely studied in the literature (Mondie & Michiels, 2003; Van Assche,
Dambrine, Lafay, & Richard, 2002). Here, interestingly, this difficulty has been easily
handledwith a trapezoidal discretizationmethod and a periodic reset of this update
law when convergence is achieved.
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Fig. 2. Simulation results of the control of system (75) with Block (D̂), starting from X(0) = [0 0]T , u(., 0) = 0 and D̂(0) = 1. The plant is assumed to be fully measured
and known. The gradient-based delay update law (77) is employed, with γD = 50 and the controller gain K is chosen thanks to an LQR criterion.

Fig. 3. Simulation results of the control of system (75) with Block (X̂), starting from X(0) = [0 0]T , u(., 0) = 0 with X̂(0) = [0.1 0]. The plant is assumed to be known
and the delay estimate is D̂ = 1. The controller gain K is chosen thanks to an LQR criterion, while the observer one is chosen as L = −[1.1 2.3]T .

provides a good identification of the unknown delay, but also
that the most visible improvements in the estimation occur at
step changes of the reference signal. This is consistent with the
employed update law, as the cost function presents its most
important gradient at these instants. This identification extends
the possibilities of regulation, as the tracking of any time-varying
smooth trajectory is then achievable. Generally speaking, the
performance of the controller is consistent with the properties
stated in Theorem 1.

9.2. Observer and output feedback

The results of an output feedback strategy, i.e. the Block (X̂)
assuming that the plant parameter θ and the input disturbance d
are constant and known as provided in Fig. 3. The initial system
state estimate is chosen as X̂(0) = [0.10]T ≠ X(0) = [00] and the
observer gain is taken arbitrarily as L = −[1.12.3]. Tis gain does
not give the best performance achievablewith the scheme, as it has
not tuned for speed of convergence. This value has been selected to

illustrate the effects of the addition of an observer into the control
scheme.

One can observe that the response time of the controller is
significantly shortened (namely 8 s instead of 5 s). This is due to
the observer behavior, which converges only after a few seconds.

9.3. Parameter adaptation

We now choose a constant delay estimate D̂ = 1 and address
the plant parameter adaptation of (75), considering that the input
disturbance d is known. Namely, the control is based on the Block
(θ̂): the closed-loop system (6)–(9), the control law (48) and the
update law defined through (49)–(51) as
τθ,1(t) = h(t) × (A1X(t) − B1Y r)

τθ,2(t) = h(t) × A2X(t).

The simulation results are provided in Fig. 4, with θ̂ (0) =

[0.08 0.258] while the unknown plant parameter value is θ =

[0.097 0.28] which represents an error of approximately 15%.
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Fig. 4. Simulation results of the control of system (75) with Block (θ̂), starting from X(0) = [0 0]T , u(., 0) = 0 and θ̂ (0) = [0.08 0.258]. The system state is assumed to
be measured and the delay estimate is kept as constant D̂ = 1. The controller gain K(θ̂) is chosen thanks to an LQR criterion and the update gain is chosen as γθ = 10−4 .

Fig. 5. Simulation results of the control of system (75) with Block (d̂), starting from X(0) = [0 0]T , u(., 0) = 0 with d̂(0) = 0. The plant is assumed to be fully known and
measured and the delay estimate is kept as constant D̂ = 1. The controller gain K is chosen thanks to an LQR criterion and the integrator one as kI = 0.4.

The output response is similar to the previous one, except a slight
oscillation during transient around 4–5 s, due to the parameter
adaptation lag.

One can notice that, when the convergence of the system state
and control is achieved (around 12 s), the estimate θ̂ (t) also
converges, which is consistent with the update law (49)–(51).
Nevertheless, the multi-parameters estimation is not obtained, as
is well-known in adaptive control (see Ioannou & Sun, 1996). In
details, for the considered system, θ̃2(t) converges to zero. This is
consistent with the dynamics given above: by examining (4)–(5)
in Assumption 2 and comparing it to the plant (75) jointly with the
convergence result of Theorem 3, one can infer the convergence of
θ̂2 to θ2, but not of θ̂1.

9.4. Integrator and disturbance rejection

The corresponding results are given in Fig. 5. One can observe
that the disturbance bias has been perfectly estimated and that the
same general comments on performance as before hold.

10. Conclusion

In this paper, we have presented a general adaptive control
scheme (see Fig. 1), based on a backstepping transformation
for linear uncertain time-delay systems, capable of addressing
a collection of classic problems of equilibrium regulation. A
simulation example with a second order linear plant from the
literature has been provided to illustrate, for each case, the
effectiveness of the design and its implementability, without
knowledge of the actuator state. From the various Lyapunov
analysis presented in this paper, it has been shown that the
proposed technique is compliant with numerous contexts and
practical difficulties (see e.g. Bresch-Pietri et al., 2011b for one
possible combination) and that its implementation difficulties are
limited (see Bresch-Pietri et al., 2010 for experimental applications
of the technique).

One path that remains to explore is the relevance of this
approach for time-varying delays, since the presence of time
variationmay inducemore complex behaviors (see for instance the
quenching phenomenon described in Louisell, 1999).
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Appendix A. Expression of the functions of f and g in (24)–(29)

f (x, t) =
ŵ(x, t)

D̂(t)
+ KBŵ(x, t) + K(A + BK)e(A+BK)D̂(t)xX̃(t)

+ D̂(t)
 x

0
K(A + BK)e(A+BK)D̂(t)(x−y)Bŵ(y, t)dy

g(x, t) = (1 − x)f (x, t) + D̂(t)K
 x

0
eAD̂(t)(x−y)B(y − 1)

× f (y, t)dy +

 x

0
K(I + AD̂(t)(x − y))eAD̂(t)(x−y)B

×


ŵ(y, t) + D̂(t)

 y

0
Ke(A+BK)D̂(t)(y−ξ)Bŵ(ξ , t)dξ

+ Ke(A+BK)D̂(t)yX̃(t)


+ KAxeAD̂(t)xX̃(t).

Appendix B. Expression of the dynamics function f in Section 6

f (x, t) =
ŵx(x, t)

D̂
+ KBŵ(x, t) + K(A + BK)e(A+BK)D̂x1X̂(t)

+ D̂
 x

0
K(A + BK)e(A+BK)D̂(x−y)Bŵ(y, t)dy.

Appendix C. Expression of the dynamics functions f , g and g0
in Section 7

f (x, t) =
ŵx(x, t)

D̂
+ KB(θ̂)ŵ(x, t) + D̂

 x

0
K(A + BK)(θ̂)

× e(A+BK)(θ̂)D̂(x−y)B(θ̂)ŵ(y, t)dy

+ K(A + BK)(θ̂)e(A+BK)(θ̂)D̂xX̃(t)

gi(x, t) = D̂
 x

0
ŵ(y, t)


∂K

∂θ̂i
+ K(θ̂)AiD̂(x − y)


× eA(θ̂)D̂(x−y)B(θ̂) + K(θ̂)eA(θ̂)D̂(x−y)Bi

+ D̂
 x

y


∂K

∂θ̂i
+ K(θ̂)AiD̂(x − ξ)



× eA(θ̂)D̂(x−ξ)B(θ̂) + K(θ̂)eA(θ̂)D̂(x−ξ)Bi



× K(θ̂)e(A+BK)(θ̂)D̂(ξ−y)B(θ̂)dξ


dy

+


D̂
 x

0


∂K

∂θ̂i
+ K(θ̂)AiD̂(x − y)



× eA(θ̂)D̂(x−y)B(θ̂) + K(θ̂)eA(θ̂)D̂(x−y)Bi


× K(θ̂)e(A+BK)(θ̂)D̂ydy

+


∂K

∂θ̂i
+ K(θ̂)AiD̂x


eA(θ̂)D̂x


X̃(t) − K(θ̂)

× eA(θ̂)D̂x ∂X
r

∂θ̂i

− D̂
 x

0
K(θ̂)eA(θ̂)D̂(x−y)B(θ̂)

dur

dθ̂i
(θ̂)dy +

dur

dθ̂i
(θ̂)

g0,i(x, t) = K(θ̂)eA(θ̂)D̂x(AiX(t) + Biu(0, t)).

Appendix D. Expression of the dynamics function f in Section 8

f (x, t) =
ŵ0,x(x, t)

D̂
+ KBŵ0(x, t) + K(A + BK)

× e(A+BK)D̂xX̃(t) + D̂
 x

0
K(A + BK)

× e(A+BK)D̂(x−y)Bŵ0(y, t)dy.
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