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Abstract: In this paper we discuss the negative impact on monitoring algorithms of working
with imprecisely dated data. Two examples from the world of the oil & gas industry are presented
and serve to illustrate that this problem can be of practical importance. First analytical results
show that when signals with significant time variations are monitored, the impact of dating of
measurements can be as troublesome (or even worse) than measurement noises.
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1. INTRODUCTION

Industrial information technology (IT) have steadily grown
and become ubiquitous and powerful over the last decades.
Due to this impressive push, the question of data-based
monitoring of processes could be expected to have become
easier. Indeed, IT has enabled the availability of massive
streams of data serving in sophisticated data analysis,
which has resulted in the development of advanced algo-
rithms. However, the situation is not that straightforward.
In this article, we wish to point out a serious and intrinsic
limitation of IT that has been, so far, underestimated:
erroneous dating of data. The focus of this article is put
on the oil & gas industry, but similar conclusions could be
drawn in numerous other fields.

Concerns about dating of measurements is not a new.
There is little doubt in the mind of production and process
engineers that mis-synchronisation of measurements has
some impact on all the algorithms they use to exploit
data. In fact, because of this belief, numerous solutions
are usually implemented to mitigate this problem. The
most widely used solution is synchronisation of clocks
across the IT network. Synchronisation procedures are
employed to have a single time-reference shared by the
various subsystems. Unfortunately, these procedures are
built on assumptions that are impossible to guarantee,
strictly speaking. For this reason, synchronisation can not
be achieved with an arbitrary accuracy (Noble (2012)).
For example, in the state-of-the-art NTP synchronization
algorithm, synchronization is only correct when both the
incoming and outgoing routes between the client (the
computer to be synchronized) and the server (considered
as reference) have symmetrical nominal delay. Otherwise,
the synchronization has a systematic bias of ∆/2 where ∆
is the difference between the forward and backward travel
times. In practical cases, this synchronicity is extremely
rare, not to say impossible: for latency in both directions of
a no trivial path to be equal and stable, it is required that

the bit rate of all links in the path are identical, the traffic
flow in both directions, the IP routing in both directions is
identical, the routing policies at every device in the path in
both directions is identical, and the host systems at both
ends are behaving identically. This situation is unrealistic
in any real-world industrial application.

In the general context of industrial process control (Luy-
ben et al. (1998)), the devices needing synchronisation are
in a very large number: e.g. for a refinery, at least hundreds
of computers and tens of thousands of sensors are under
consideration. The nature and the quality of the network
employed has also a great importance. For example, in the
quickly evolving “digital oilfield” applications, networks
are composed of various types of connections (Ethernet,
Wireless, Fiber, VSTA) with great variability in their
bandwidth and latency. These facts make synchronisation
of such networks a serious problem, not to say an almost
impossible task, given the performance of currently em-
ployed technologies.

For these reasons, one observes relatively large mis-
synchronisation of data in plant-wide applications. A nat-
ural question is to determine whether mis-synchronisation
is large enough to cause any problem. More precisely and
quantitatively, one can formulate the following: What is
the cost of working with imprecisely dated measurements?

To try to answer this question, we consider two simple ap-
plications, putting into play basic monitoring applications.
As will be shown, the mis-synchronisation is the root cause
of mis-interpretation in the monitoring tasks.

The paper is organized as follows. In Section 2, a general
description of current IT systems and recent “Big Data”
technologies is proposed. Two examples are treated in Sec-
tion 3 and Section 4, respectively. The first problem under
consideration, which receives analytical investigations, is
a material flow monitoring application, the second one is
the calculation of allocation factor in a oil-field. Section 5
contains conclusions.
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2. GENERAL FACTS FOR INDUSTRIAL DATA
MANAGEMENT SYSTEMS

2.1 Domains and current architectures as sources of
mis-synchronisation

Before developing the examples under consideration, it is
necessary to give a brief overview of current technologies
in industrial data management systems. In most current
implementations, the typical constitutive elements of an
IT system are historian databases, production databases,
and application servers. At a company level, the IT system
is usually decomposed into two areas: the Process domain
and the Office domain.

In the process domain, one finds the sensors, SCADAs
(supervisory control and data acquisition), PLCs (Pro-
grammable logic controller), RTUs (Remote terminal
units). Data is collected and stored in Historian databases
which are part of the process-domain. These systems pro-
vide convenient support for the tasks of real-time on-site
operations surveillance.

In the office domain, one finds Production database man-
agement systems (PDMS) with technologies based on
SQL (Beaulieu (2005)). Databases contain various doc-
uments: production events, networks descriptions, daily
reports. To grant data access, a replica of the process
domain historian database is used.

In large-scale production systems, the network is geo-
graphically distributed from production sites to offices.
This is particularly true for the oil & gas industry. Nu-
merous parts of the networks (connection lines or subnet-
works) may have very limited bandwidth, and communica-
tion outages can happen at any connection in the network.

At a company-wide scale, the amount of data necessary to
perform real-time monitoring and analysis exceeds data
volumes that existing architectures can deal with easily.
The reasons for this are that i) the SCADAs are designed
to provide security of operations and are not scalable,
ii) the production network is bandwidth limited and
unreliable (e.g. VSAT), iii) accessing a central database for
daily applications yields high latency, iv) current PDMS
can not do large-scale data replication across sites, v) SQL
limit data availability because of locks issues in case of
network partition.

Because of the technology gaps and heavy and slow inter-
connections between process domain and office domain IT
technologies, mis-synchronisation of data occurs.

2.2 Big data technologies for geographically distributed
production IT system

Currently, office domain data storage is organized in clus-
ter operating hardware and software chosen for providing
maximum robustness. However, this is not the only aspect
that should be paid attention to.

Outside the industrial world (e.g. in e-business), modern
IT systems are chosen for their ability to scale rapidly
and grant easy and fast access to data, at a company-wide
level. At this scale, data should be read and written from
multiple replicated databases at once. The whole system

must be robust to hardware failures. This is all the most
important as the probability of individual failure is high
when the number of elements increases. The IT has to deal
with seek time improving more slowly than transfer rate
and inhomogeneous bandwidth distribution. These are two
important sources of latency if not treated appropriately.
For scalability, an IT system should be chosen to guarantee
that if one doubles the amount of data to be treated
and doubles the size of the hardware handling this data
(clusters), then accessing (and processing) the data should
run just as fast (not slower), and without any increased
probability of failure.

The preceding issues have received numerous answers from
the world of Computer Science “Big Data” where the
amount of data grows quickly. There are several properties
that need to be enforced by the IT architecture to grant
fault tolerance and scalability. Interestingly, these are au-
tomatically obtained if one considers specific programming
languages. Among these languages are Erlang (Cesarini
and Thompson (2009)), Hadoop (White (2012)). Synchro-
nization of databases, is, at the considered company-wide
scale, a problem of many-to-many talking. For this prob-
lem, standard (currently employed) software technologies
are not well suited. Rather, one should consider the con-
cept of (geographically) distributed databases, which are
state-of-the-art in the Internet: Google’s BigTable (Chang
et al. (2008)), Amazon’s Dynamo (DeCandia et al. (2007))
among others. These use redundant storage on clusters of
commodity hardware and are instrumental in the scaling
to petabytes-large datasets across locations. “Single point
of failure” issues are avoided. Write can be done on any
node thanks to smart conflict resolution. In these tech-
nology, a central concept is Message Oriented Middleware
(MOM) which facilitates integration of heterogeneous and
decoupled systems. It is based on asynchronous message
passing to orchestrate data access and exchanges between
application sharing common data sources. Message passing
across applications and publish/subscribe handles trans-
formation of data formats, and decouples systems in terms
of space, time and synchronicity. It is a highly scalable
many-to-many communication system from senders to re-
ceivers. In the industrial context of this article, publishers
would be sensors, algorithms, applications outputs, while
subscribers would be algorithms, applications.

Several studies focused on the oil & gas industry have
reported that the “Big Data” technology is capable of
handling data of dozens of fields, each with hundreds of
wells. This permits to draw similar conclusions for large
chemical plants and refineries.

However, they are not used yet in industry. For this reason,
one currently has to deal with mis-synchronisation of data.

3. BULK FLOW MONITORING

To illustrate why mis-synchronisation is a true problem, let
us now consider a first application, introduced in Magnis
and Petit (2013). Consider a pipeline that is monitored
to detect leaks (which can be also thefts (Dudek (2005);
API (1995)). The situation is pictured in Figure 2. To
achieve the monitoring (see Figure 3), the inlet an outlet
of the transport pipe are equipped with flow meters. These
devices sample the flow variable and communicate the
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Fig. 1. A typical production IT system.
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Fig. 3. Bulk-flow.

Fig. 2. Detection of leaks on a pipeline.

data to a centralized system (SCADA) which applies a
time stamping at the reception. Due to communication
delays which vary over time (and may jump by large
amounts), the data that is available at the SCADA level
is not consistent, because the flow measurements are not
synchronous, although they may appear as such in the his-
torian database, if they are received simultaneously. One
could imagine that the solution would be to timestamp the
data at emission (i.e. at the DAD level). However, there
is no guarantee that the internal clocks of the DAD are
synchronized. In practice, clocks are not synchronised. We
refer the interested reader to the introductory discussion
on the flaws of NTP synchronisation algorithm and the
weakness of the signals received from atomic clocks (which
could appear as an attractive solution when its induced
cost does not discard it from applications).

3.1 Model and state-of-the art monitoring system

Mathematically, the usual technique employed for detect-
ing the leaks consists in formulating a mass balance equa-
tion (Begovich et al. (2007); Fraden (2010); Geiger (2006)).
Note q the inlet flow rate, λq the outlet flow rate, with
λ ∈ (0, 1] which is unknown. The loss factor is 1−λ (λ = 1
corresponds to a no loss situation). The two DADs produce
samples of the flow rates (∆t is the sample time), which
are corrupted with noises.

yI [i] = q(i∆t) + ni, yO[i] = λq(i∆t) + n′i
With this modelling, an Imbalance estimator over a time-
window [0, T ] is

b̂ = ∆t

∑
i yI [i]− yO[i]∫ T

0
q(t)dt

Due to noises, we have:

b̂ = 1− λ+ noise + numerical integration error︸ ︷︷ ︸
= 0 by assumption

Then a simple detection algorithm is to define the alarm
as follows

b̂ ≥ b∗: loss-alarm

b̂ < b∗: no loss-alarm

The threshold b∗ is the only parameter of this algorithm.

3.2 A priori bound without dating uncertainty

From information theory, it is possible to derive a lower
bound on the variance of estimators of the deterministic
parameter λ. For this, we consider a particular stochastic
setup, but generalizations are possible.

Classically, the Cramér-Rao bound expresses a lower-
bound on the variance of any unbiased estimator of
λ obtained from a given set of measurements X dis-
tributed according to a probability density function
f(X,λ) (see Frieden (2004)). This bound is

Varλ̂ ≥ 1

I(λ)

where I is the Fischer information defined as

I(λ) = −E[
∂2`(X,λ)

∂λ2
], `(X,λ) = log f(X,λ)

Here, the measurements X are the available samples yI []
and y0[]. For a given flow rate q and centered Gaussian

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 969



noises n and n′, one can express the probability density
function f as

f(X,λ) = C
∏
i

G(y0[i] = Xi, λq(i∆t), σ
′)

where G(X,m, σ) designates a Gaussian distribution of
averagem and variance σ2, and C factors all the terms that
do not depend on λ. The variance of the discrete processes
n (and n′) can be obtained from the power spectral density
(PSD) R (and R′) as

σ2 = R/(∆t), (σ′)2 = R′/(∆t)

This gives

` = log(f(X,λ)) = logC +
∑
i

(λq(i∆t)−Xi)
2

2(σ′)2

where c does not depend on λ. Then

− ∂
2`

∂λ2
=
∑
i

q(i∆t)2

(σ′)2

which directly give I(λ). So, assuming a large number of
samples are available and, for ease of reading, considering
the limit case ∆t→ 0, one deduces the handy formula

Var(λ̂) ≥ R′

‖q‖22
(1)

where ‖q‖22 =
∫ T

0
q(τ)2dτ , for [0, T ] covering all the sample

times.

3.3 Introducing dating uncertainty

Now, to account for dating uncertainty, we introduce noise
in the sampling instants. Straightforwardly, we consider

yI [i] = q(i∆t) + ni, yO[i] = λq(i∆t+ wi) + n′i
with wi is a random value.

To quantitatively study the impact of the uncertainty, we
introduce the following stochastic modeling (see Magnis
and Petit (2013) for extensions and numerical studies).
It is considered that λ is an unknown, the dating uncer-
tainties wi are independent identically distributed centered
Gaussian variables, and the overall noise is Gaussian and
centered. In principles, this allows us to perform explicit
computations for the probability law of accurately detect-
ing losses and generating false alarms.

The uncertainties creates ambiguity which grows with the
variance of w.

3.4 A priori bound with dating uncertainty

Note (σw)2 = Rw/∆t the variance of the centered Gaus-
sian noise w. Developing

yO[i] = λq(i∆t) + λwiq̇(i∆t) + n′i
Note

si(λ) =
√
σ′2i + λ2σ2

w q̇(i∆t)
2, pi(λ) = si(λ)2

The density function of the measurement vector X is

f(X,λ) = C
∏
i

G(y0[i] = Xi, λq(i∆t), s(λ))

where, again, C gathers all the terms that do not depend
on λ. Here, ` = log(f(X,λ)) has the form

` = logC +
∑
i

−1

2
log pi(λ)− (λq(i∆t)−Xi)

2

2pi(λ)

Thus,

∂`

∂λ
=
∑
i

− λσ2
w q̇(i∆t)

2

pi(λ)
+

(λq(i∆t)−Xi)
2λσ2

w q̇(i∆t)
2

pi(λ)2

− q(i∆t)(λq(i∆t)−Xi)

pi(λ)

and
∂2`

∂λ2
=
∑
i

− σ2
w q̇(i∆t)

2

pi(λ)
+

2λ2σ4
w q̇(i∆t)

4

pi(λ)2

+
2q(i∆t)(λq(i∆t)−Xi)λσ

2
w q̇(i∆t)

2

pi(λ)2

+
(λq(i∆t)−Xi)

2σ2
w q̇(i∆t)

2

pi(λ)2

− 4(λq(i∆t)−Xi)
2λ2σ4

w q̇(i∆t)
4

pi(λ)3

− q(i∆t)2

pi(λ)

+
2λσ2

w q̇(i∆t)
2q(i∆t)(λq(i∆t)−Xi)

pi(λ)2

Then,

−E[
∂2`

∂λ2
] =

∑
i

σ2
w q̇(i∆t)

2

pi(λ)
− 2λ2σ4

w q̇(i∆t)
4

pi(λ)2

− σ2
w q̇(i∆t)

2

pi(λ)
+

4λ2σ4
w q̇(i∆t)

4

pi(λ)2

+
q(i∆t)2

pi(λ)

After simplification,

I(λ) = −E[
∂2`

∂λ2
] =

∑
i

2λ2σ4
w q̇(i∆t)

4

pi(λ)2
+
q(i∆t)2

pi(λ)

For which we derive the following Cramér-Rao inequality

Var(λ̂) ≥ 1

I(λ)

For small values of σw the dominant term in the expansion
of this expression (in powers of σw) is, using a convenient
limit ∆t→ 0

Var(λ̂) ≥ R′

‖q‖22
+Rwλ

2 ‖qq̇‖
2
2

‖q‖42
(2)

where ‖q‖22 =
∫ T

0
q(τ)2dτ , ‖qq̇‖22 =

∫ T

0
q(τ)2q̇(τ)2dτ , for

[0, T ] covering all the sample times. Interestingly, (2) can
be compared to (1), stressing the additional error due to
dating uncertainty.

3.5 Application example

To avoid having too many data interlacing, i.e. data
arriving in the wrong order, it is natural to impose that
σw < ∆t/γ, where γ > 1. Then, this gives Rw < ∆t3/γ2.
We now consider a periodic signal q(t) = 1 + 1

2 sin(2πNt)
where N is a given frequency. We wish to determine a
critical frequency above which the error due to noise is
overwhelmed by the error due to the mis-synchronisation
as computed in (2).
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Fig. 5. Signals N=14 for which dating uncertainty is caus-
ing as much error on the loss detection as measure-
ment noise.
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Fig. 4. Signals N=7 for which dating uncertainty is causing
as much error on the loss detection as measurement
noise.

For a time horizon [0, T ], one has

q̇(t) = πN cos(2πNt)

which shows that ‖qq̇‖22 is an increasing function of N .

When the variance of w is increased, the contribution
of dating uncertainty to the variance in the Cramér-Rao
bound is dominant. This is clear from (2). This can be
observed in Table 1 and Table 2. Typically, when approx.
10% of the dating uncertainty is larger than ∆t (= 0.01
in this simulation) in absolute value, this is the case for
N = 7. When the frequency of the signal is doubled to

N = 14, this percentage drops to the very demanding value
of 0.2%. Signals are reported in Figure 4 and Figure 5.

Further for large values of N , i.e. when the measured signal
is high frequency, the variance due to dating uncertainty
gets large. Eventually, it gets larger than the variance due
to noise. This can be observed by comparing the value in
Table 1 and Table 2 respectively.

4. ALLOCATION FACTOR: DATA VALIDATION
AND RECONCILIATION (DVR)

The second application that we wish to discuss stresses the
difficulties related to geographically distributed IT systems
(see Préveral et al. (2014) for more details).

4.1 Data Validation and Reconciliation (DVR)

A daily task that production engineers must perform in
the oil industry is Data Validation and Reconciliation
(DVR). After having gathered production data consisting
in redundant real-time measurements of flow rates (and
possibly pressures, temperatures) from sensors placed in
various locations in the production networks, the task
consists in producing best estimates of the production of
each well, by an analysis of the data and their comparison
at the light of mass balance equations. Determining each
well production level is important to perform hydrocarbon
accounting, detect possible production network leaks, and
very importantly, validate geophysics studies modeling
the mid-term or long-term behavior or the producing
reservoir. In theory, this task boils down to a clear linear
data analysis problem, as is shown below. In practice,
up to 60% of production engineers monitoring time is
spent gathering data. This is due to the fact that the
various IT subsystems (PDMS (well tests results, shuts-
ins, production events) and historian databases (sensor
data)) needed are not properly interconnected, produce
data with inconsistent formats, and are not synchronized
(and sometimes missing). This tedious task is performed
daily.

4.2 A case study: production network

DVR solution Mathematically, the DVR problem can be
simply modeled as follows (in its simples form). First, one
shall partition the variables as

x =

(
xm
xu

)
where xm are measured flow rates, and xu are unmeasured
flow rates. The equation relating these variables are, from
conservation principles (material balance)

Ax = 0

where A is a network representation matrix given in
Figure 6. Then, by separating the material balance as

Amxm +Auxu = 0

and by introducing some uncertainty to account for mea-
surement noise

y = xm + e

where e is zero-mean (un-correlated) Gaussian noise of
standard deviation σ, the DVR can be reformulated as
the following constrained optimization problem
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% outside [−∆t,∆t] var. due to noise var. due to dating Cramér-Rao bound

31.7 9.42e-06 2.15e-05 3.09e-05
21.1 9.42e-06 1.37e-05 2.32e-05
13.3 9.46e-06 9.56e-06 1.89e-05

8.0 9.42e-06 7.03e-06 1.64e-05
4.5 9.42e-06 5.38e-06 1.48e-05
2.4 9.42e-06 4.25e-06 1.36e-05
1.2 9.42e-06 3.44e-06 1.28e-05
0.6 9.42e-06 2.84e-06 1.22e-05
0.3 9.42e-06 2.39e-06 1.18e-05
0.0 9.42e-06 1.34e-06 1.07e-05

Table 1. Error Variance due to dating uncertainty can overwhelm noise (N=7)

% outside [−∆t,∆t] var. due to noise var. due to dating Cramér-Rao bound

31.7 9.42e-06 8.61e-05 9.55e-05
21.1 9.42e-06 5.51e-05 6.45e-05
13.3 9.42e-06 3.82e-05 4.77e-05

8 9.42e-06 2.8e-05 3.75e-05
4.5 9.42e-06 2.1e-05 3.09e-05
2.4 9.42e-06 1.70e-05 2.64e-05
1.2 9.42e-06 1.37e-05 2.32e-05
0.6 9.42e-06 1.13e-05 2.08e-05
0.3 9.42e-06 9.56e-06 1.89e-05

0.04 9.42e-06 7.03e-06 1.64e-05
0.0 9.42e-06 5.38e-06 1.48e-05

Table 2. Error Variance due to dating uncertainty can overwhelm noise (N=14)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Well 1 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well 2 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well 3 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
Sep. 1 0 0 0 1 1 1 0 0 0 0 -1 0 0 0 0 0 0 0 0
Well 4 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0
Well 5 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0
...
Export 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1

Fig. 6. Network matrix representation.

min
x

s.t. Ax = 0

∑
i

(
yi − xi
σi

)2

(3)

In the so-called observable case, the solution to the DVR
(3) produces, using the QR decomposition

Au = QR = (Q1 Q2 )

(
R
0

)
Π

and noting S = QT
2 Am

Σ = diag(σ)

then

x̂m = y − ΣST (SΣST )−1Sy

x̂u = −Π−1R−1QT
1 Amx̂m

which are unbiased normally distributed estimates. Above,
x̂m is called the reconciliation of measured variables, and
x̂u is the coaptation for unmeasured variables.

4.3 Analysis of the results

Considering the network pictured in Figure 7, simulation
data have been treated in a DVR scenario. The sensors
have various level of uncertainty. Well 5 has a Multiphase

Flow Meter. Two export stations are measured accurately.
Other sensors are deployed, providing mid-to-large uncer-
tainty measurements.

Several mis-synchronisation has been introduced in the
data. Typical synchronisation errors due to heterogeneous
databases are introduced. Some flow rates are down-
sampled and averaged to daily values, which also intro-
duces some lag. Delays are present on flow rate measure-
ments.

Individual well flow rate estimates are reproduced in
Figure 8 Averaged values are consistent with true means,
but poorly-synchronized estimates fail to warn of well 4
flow rate reduction (at time=180). Further a false warning
at time=400 as production is smooth, while DVR detects
a non-existing anomaly.

On the other hand, the key production indicator which
is the allocation factor (ratio of total well flow estimate
to total measured bulk/fiscal flow) is wrongly computed.
The histories reproduced in Figure 9 stress this fact.
Instead of the true value which kindly oscillates about 1,
spurious oscillations appear in the reconstructed value.
Reality is much smoother than DVR estimates suggest.
Spurious oscillations are due to mis-synchronisation of
data produced by the IT system.
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Fig. 7. A production network.

Fig. 8. Individual well flow rate estimates.

Fig. 9. Allocation factor.

5. CONCLUSIONS

Based on two simple but representative problems, this
article wish to stress the negative impact of measure-
ments dating errors on monitoring algorithms. In fact, mis-
synchronisation can be more important than noises, which
is not a well-known fact. The analytical study conducted
on the bulk-flow monitoring problem proves this state-
ment. It could be generalized to other cases of applications
(including the second example presented here), and to the
vast question of data assimilation.
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