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Abstract— We propose in this paper a method to estimate the
velocity of a rigid body, using a novel stereo-vision principle.
It is presented and applied in a laboratory test case which
is representative of low-cost navigation for ground vehicles.
The method exploits the dynamics of a scalar field obtained
by weighting and averaging the brightness perceived by two
embedded neighboring cameras. To be more specific, the
cameras are complemented with a gyrometer to retrieve the
curvilinear velocity of the moving rigid body. The proposed
method is first tested on synthetic data, then on real data, and
shows robustness to poor quality of image data. Significant
levels of noise and blur are tested; in addition, this method does
not require high resolution images, as opposed to any existing
methods based on triangulation and tracking of keypoints.

I. INTRODUCTION

In many ground transportations or land navigation appli-
cations where the path of a vehicle is known in advance,
the current position of this vehicle can be derived from
the distance traveled from the starting point (the curvilinear
abscissa along the path). By extension, a similar approach
is still valid when, instead of the path, the current head-
ing of the vehicle is accessible (via embedded gyroscopes
for example, or GPS compass [1]), in the spirit of dead
reckoning [2], [3]. The traveled distance can be rapidly ob-
tained by direct measurements, such as odometry (equipping
most of wheeled robots and experimental vehicles), which
rely on wheel motion to obtain position and orientation.
Unfortunately, this mechanical device is very sensitive to
uncertainties produced by wheel sliding on the ground, or
soil imperfections. It is thus required to regularly register
the robot, i.e. get absolute or relative positions estimates,
with respect to known positions obtained by other means
[4], [5]. Another widely considered possibility consists in
integrating the velocity of the vehicle, which is itself obtained
by integration of the acceleration provided by an Inertial
Measurement Unit (IMU) [6], [7]. The cumulated error of the
double integration can only be kept relatively small for high
quality low-bias systems such as the ones used for missile
guidance and control [8]: these systems are unfortunately too
expensive to be considered for mass-markets applications.
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IMU-based low-cost solutions are typically coupled with
GPS sparse measurements, only available in outdoors and in
low buildings urban environments [9], [10], [11]. As a result,
there is still a need for novel velocity estimation techniques
provided that they can be low-cost and robust. This is the
problem we consider, using embedded cameras and low-cost
IMUs [12].

Since the 1980’, research in image processing and com-
puter vision has tackled the problem of pose estimation
[13], [14]. Miniaturization and low-cost commercialization
of vision systems has made this solution eligible for large-
scale use, but the robustness, accuracy and real-time compat-
ibility of these methods are not fully assessed yet. Two types
of vision systems have been extensively studied, namely
monocular and binocular (or stereoscopic) systems. The first
one relies on optical flow analysis [15], [16], [2] or image
point correspondences [17], [3]. Without any additional sen-
sor output, it intrinsically lacks a scaling factor: velocity at
any time t can only be known relatively to another (e.g. ini-
tial) velocity [18]. On the contrary, the distance between the
optical centers of the cameras (the baseline) in a stereo-vision
system directly provides the missing scaling factor for the
employed triangulation method. Triangulation matches key-
points (or geometric primitives) in the image to estimate the
3-dimensional coordinates of the underlying physical objects
under consideration [19]. The image-referenced dynamics of
the projection of these landmarks is then filtered to obtain
the pose estimate of the vision system [20], [21], [22]. These
techniques are rapidly evolving, but the stereo preprocessing
(rectification, prefiltering and correlation), which is necessary
to robustify the correspondence step, significantly weighs
their computational cost down.

The approach we propose bypasses the discussed cor-
respondence problem to directly estimate the curvilinear
velocity from the image. Our approach is inspired by the
techniques of distributed magnetometry navigation first pre-
sented in [23] and developed since then [24]: in a static
environment, given a measured field B only depending on
the state of the measuring apparatus (namely the position x
and orientation θ of the stereo-vision system), any temporal
variation of the sensed value of B is directly related to
variations of the state (x,θ). Here, B is simply built from
the brightness of the perceived images. From this seem-
ingly basic principle, we derive a method to estimate the
curvilinear velocity. We show that this method is robust to
noise and to blurring effects, can be used with low-cost
material, and is compatible with real-time applications (as
data can be significantly down-sampled which alleviates the
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computational burden). It is thus robust to poor quality image
data. To our knowledge, there are few attempts to treat the
image perceived by a vision system as a physical signal, just
as temperature or magnetic field: the variations of this signal
only depend on the configuration of the measuring system.

The paper is organized as follows. In Section II, the
notations of the problem are introduced, the field B is
defined, and the governing dynamics equations are derived.
In Section III, the method used to implement the equations in
a real application is described and an observer for curvilinear
velocity is presented. In Section IV, technical details for
implementation of this method are considered, and results
of simulations and experiments are given. In Section V,
the robustness of the method is tested. Finally, some future
directions are discussed in Section VI

II. PRELIMINARIES

In this section, we state the problem notations involving
one preliminarily idealized camera and the equations govern-
ing the weighted-averaged brightness during translation and
rotation motion.

A. Notations and frameworks

The model of spherical camera we consider is based
on geometric assumptions introduced in [25]. Linear and
angular velocities v(t) and ω(t) with respect to an inertial
frame of reference R are expressed in the (body) camera
frame Rb. Position of the optical center of the camera with
respect to R is denoted by C(t) = x(t). Orientation of Rb
with respect to R is given by the quaternion q(t): any vector
ζ in the camera frame corresponds to the vector qζq∗ in
the reference frame R using the identification of vectors as
imaginary quaternions, where ∗ denotes conjugation. A pixel
is labeled by the unit vector η in the camera frame: η belongs
to the sphere S2 and receives the intensity y (for grayscale
images).

The scene is modeled as a closed, C1 and convex surface
Σ of R3, diffeomorphic to S2. The camera lies inside the
domain Ω ⊂ R3 delimited by Σ = ∂Ω. To a point M ∈ Σ
corresponds one and only one camera pixel. The density of
light emitted by M does not depend on the direction of
emission (Σ is a Lambertian surface) and is independent
of t (the scene is static and the lighting is constant). By
the identity qηq∗ = C(t)M

‖C(t)M‖ , where η is identified to an
imaginary quaternion, and under all previous assumptions, y
is a function of η, x(t) and q(t).

At each instant t during the motion, the image produced
by the camera is described by the scalar field S2 3 η 7→
y(η, x(t), q(t)) ∈ R.

The distance ‖C(t)M‖ between the optical center and the
object seen in the direction η is denoted by D, and its inverse
by Γ = 1/D. Fig.1 illustrates the model and the notations.

Under these assumptions, during the motion at velocity v
and rate of turn ω, the intensity y(η, x(t), q(t)) satisfies the
following partial differential equation:

∂y

∂t
= −∇y · (η × (ω + Γη × v)) (1)

Fig. 1. Model and notations of a spherical camera in a static environment.

where ∇y is the gradient of y with respect to the Riemannian
metric on S2. The value of ∇y at η ∈ S2 is identified with a
vector of R3 tangent to the sphere at the point η, itself being
identified to a unitary vector of R3 in the camera moving
frame. In (1), the Euclidean scalar product of two vectors a
and b in R3 is denoted by a · b and their wedge product by
a × b. More details on how to obtain this equation can be
found in [25].

Remark 1: Equation (1) is the sum of two influences, the
rotational and translational displacements, respectively. The
depth Γ scales the translational velocity.

B. Governing equations

From the (scalar) intensity field y, one can build another
scalar field, noted B, defined as:

B(x, q) =

∫
S2
ϕ(−η)y (η, x, q) dση (2)

where ϕ is a smooth (differentiable) convolution kernel, de-
fined on the unit sphere S2, and dση denotes the infinitesimal
surface element on S2. Clearly, B does not directly depend
on time since the environment is static. The variations of
B are directly related to the camera motion. The chain rule
applied to B(x(t), q(t)) yields:

dB

dt
= V T∇xB + ΩT∇θB (3)

where ∇x denotes the gradient with respect to the position
x of the optical center, ∇θ denotes the gradient with respect
to the 3-dimensional orientation of the optical axis of the
camera, V and Ω are the 3-dimensional linear and angular
velocities of the camera with respect to the inertial frame
R. For the sake of exploiting this equation, it has to be
projected onto the reference frame Rb to which the sensors
are attached.

III. EXPLOITATION OF WEIGHTED-AVERAGED
INTENSITIES FOR VELOCITY ESTIMATION

A. Problem statement

Consider a rigid body in translation and rotation motion
with respect to an inertial frame of reference R equipped
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with sensors aligned with a body-attached frame of reference
Rb. The motion occurs in a plane (say the plane defined by
xb and yb-axis). It is desired to estimate the projection of the
translational velocity Vxb

along one of the axis of Rb (say
the xb-axis).

B. Proposed solution

In our proposed solution, we consider a set of sensors,
refered to as ”apparatus” in the following. The sensors
consist of two cameras of the type studied in Section II and
one gyrometer measuring the rate of turn θ̇c of the rigid
body (identified to Rb) with respect to R. The two cameras
are located along the xb-axis. As will appear from (3), the
velocity Vxb

satisfies the equation

dB

dt
= Vxb

∂B

∂xb
+ θ̇c

∂B

∂θc
(4)

where B is defined as in (2). Each term of (4), except Vxb
,

can be measured with the proposed apparatus.
Remark 2: Note that in this notation, θc(t) replaces q(t),

and designs the orientation of the optical axis of a camera
with respect to R. This notation stands when orientation is
reduced to one angle as in this specific case of motion.

C. Determining the derivatives

We first establish (4) from (3). Note that the operators ∇θ
and −∇η can be readily identified:

∇θ = −∇η (5)

Indeed, a change of direction of the optical axis is strictly
equivalent to an opposite change of indexation of the pixels,
as long as any object of the scene remains in the field of view
of the camera (which is the case for the spherical camera
under consideration). By integration by parts, this yields

∇θB =

∫
S2
ϕ(−η)∇θ (y (η, x, q)) dση

= −
∫
S2
∇η (ϕ(−η)) y (η, x, q) dση (6)

This means that for any given convolution kernel ϕ, ∇θB
can be as easily computed as B from any image y, i.e. from
any field η 7→ y(η, x, q).

However, as underlined in Remark 1, ∇xB can not be
retrieved from a single camera without any notion of the
depth field Γ: one can not predict the position of an object in
an image after a non-purely rotational motion if the relative
position of the object is unknown. This forces to get ∇xB
by some spatial differentiation scheme, thus to use at least
one additional camera. For each camera i, with optical center
Ci(t) and optical axis direction qi(t) with respect to R, a
scalar field Bi is computed (the same convolution kernel is
used for all cameras). The Bi variables actually correspond
to B(xi, qi). If the cameras are close enough, the first order
relation between any Bi and Bj is:

Bj ≈ Bi + CiCj · ∇xB + ∆θij · ∇θB (7)

where ∆θij is the rotation between qi and qj . In this
apparatus, the cameras (as well as the gyrometer) are rigidly

attached to the solid body. Assuming that their relative
(constant) position and orientation CiCj and ∆θij are
known, e.g. thanks to preliminary offline measurements or
identification procedure, (7) together with (6) enables to
determine the projection of ∇xB on CiCj . In other words,
with two cameras aligned along the xb-axis of Rb, if the
distance between the optical centers of the cameras h is
sufficiently small, this yields

∂B

∂xb
=
B2 −B1 −∆θij · ∇θB

h
(8)

Formally, through (4), this shows the observability of Vxb

using measurements from the proposed apparatus consisting
of two cameras and a gyrometer.

D. An observer to reconstruct the velocity

Considering ∂B
∂xb

as a measurement obtained from (8),
we propose the following observer based on the dynamics
(4) to estimate the velocity Vxb

modeled as a constant for
simplicity (extension to low-pass filters driven by white
noise, as usually considered for performance improvement,
can be readily addressed):

˙̂
B = V̂ ∂B

∂xb
+ θ̇c

∂B
∂θc
− (B̂ −B)L1

∂B
∂xb

˙̂
V = −l2(B̂ −B) ∂B∂xb

(9)

where B̂ and V̂ are the estimates of B and Vxb
, respectively;

B, ∂B
∂θc

and ∂B
∂xb

are provided by the cameras as explained
in III-C; θ̇c is directly provided by an embedded gyrometer
(which can be filtered for sake of noise reduction); l2 > 0
and L1 is a scalar defined below. The error dynamics with
respect to {

dB
dt = Vxb

∂B
∂xb

+ θ̇c
∂B
∂θc

˙Vxb
= 0

(10)

is 
˙̃B = Ṽ ∂B

∂xb
− B̃L1

∂B
∂xb

˙̃V = −l2B̃ ∂B
∂xb

(11)

Proposition 1: The error dynamics (11), where
L1 , l1

∂B
∂xb

, with l1 > 0 and l2 > 0 is
globally asymptotically stable (limt→+∞ B̃ = 0 and
limt→+∞ Ṽ = 0) provided that ∂B

∂xb
is non zero.

Proof: Consider the Lyapunov function W

W = |B̂ −B|2 +
1

l2
|V̂ − Vxb

|2 (12)

Using (11), one gets

Ẇ = −2B̃2L1
∂B

∂xb
(13)

Thus, choosing L1 = l1
∂B
∂xb

, with l1 > 0 yields Ẇ ≤ 0. If

the set of trajectories
{

(B̃, Ṽ ) s.t. Ẇ = 0
}

only contains the

origin (B̃, Ṽ ) = (0, 0), then LaSalle’s invariance principle
[26] enables to conclude that the trivial trajectory is globally
asymptotically stable (see also [27] for a proof in non
autonomous cases).
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Trajectories lying in the set Ẇ = 0 satisfy

B̃
∂B

∂xb
= 0 (14)

Assuming that ∂B
∂xb

is non zero, i.e. the image is not uniform,
this yields B̃ = 0. In this set, the dynamics (4) yields

˙̃B = Ṽ
∂B

∂xb
− l1B̃

(
∂B

∂xb

)2

(15)

and assures that Ṽ = 0, which concludes the proof.

Remark 3: With four cameras located at the vertices of a
non-singular tetrahedron, ∇xB would be fully characterized
by (7). Using three independent kernels for each camera
gives a vector B with three components, and ∇xB is
then a 3x3 matrix. Assuming that three gyrometers give
measurements of the angular velocity of the rigid body,
observer (9) is generalized into

˙̂
B = V̂ T∇xB + ΩT∇θB − (B̂T −BT )L1∇xB
˙̂
V = −l2(B̂T −BT )∇xB

(16)
With L1 = l1∇xBT and assuming that ∇xB is non

singular, the previous proposition is still valid, and observer
(16) estimates the three components of the translational
speed V .

IV. IMPLEMENTATION, SIMULATIONS AND
EXPERIMENTAL RESULTS

A. Choice of the kernel

Realistic cameras have limited fields of view on contrary
of spherical cameras. Thus it is essential to understand the
importance of the boundary effects.

Firstly, when stating the governing partial differential
equation (3), one assumes that the value of B at time t+ dt
is predictable from the knowledge of the value B at time
t and the motion of the camera. This is obviously not true
when objects appear or disappear in the image from the sides
of the image frame. Fortunately, it is possible to minimize
the impact of these boundary source terms. A solution is to
decrease the weight of these objects in B, e.g. by choosing
small values for the convolution kernel ϕ on sufficiently large
strips bordering the sides of the image frame (where objects
are likely to appear or disappear). For planar trajectories,
this only concerns the left and right sides of both cameras.
The width Λ of these ”zero” strips is chosen to ensure that
it covers any new object entering the image frame. In the
following, a possible value for Λ depending on the motion
parameters (and sampling time) of the camera and on the
environment is given.

Considering again that translation and rotation occur in a
plane, and that the linear velocity is orthogonal to the optical
axis of the camera (to ease the computation), we model the
image as the intersection of the unit sphere S2 and the plane
of motion of the camera. Fig.2 illustrates this viewpoint.

Fig. 2. Infinitesimal translation and rotation of a spherical camera tracking
a fixed point of the environment.

We consider an object M being at time t at the boundary
of the image frame: we want to ensure that at time t+ δt, it
belongs to the ”zero” strips of width Λ. The direction of the
optical axis with respect to R is denoted θc at time t and
θ′c at time t + δt where δt is a small time increment, with
θ′c−θc = δθc. The position x of the optical center undergoes
an infinitesimal translation δx between t and t + δt. θ1 is
the direction at t in the field of view of the camera where
the fixed point M of the environment, distant of 1/Γ1 is
perceived, taken from the optical axis, and θ′1 is the direction
of perception of the same point at time t+ δt. In this case,
the infinitesimal motion leads to:

θ
′

1 = arctan

(
tan θ1 − δx

Γ1

cos θ1

)
− δθc (17)

= θ1 − δxΓ1 cos θ1 − δθc (18)

at first order in δx and δθc.
This yields the choice for Λ:

Λ ≥
(
V max
xb

Γmax + ˙θmax
c

)
δt ≥ |θ

′

1 − θ1| (19)

Secondly, in (6), the boundary term in the integration by
parts is null by integration on the closed domain S2, but this
is no longer the case with a partial area of S2. However, the
choice of small values of ϕ on the sides of the frame ensures
that the boundary term is canceled (for δt→ 0), and (6) can
still be a valid model.

Finally, ϕ is chosen as a one-dimensional smooth function,
repeated along the vertical direction, which is orthogonal to
the plane where the trajectory lies: a choice of appropriately
scaled Gaussian derivatives enables to easily control the
width Λ and to have an analytic expression of any spatial
derivatives of the kernel; ϕ is chosen to enhance the contrasts
of the image and thus to better discriminate the relative
motion of the objects in the image. This can be achieved
by tuning the derivative order of the considered Gaussian
function.
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B. Simulations
The asymptotic observer (9) proposed in III-D is tested on

a sequence of synthetic images described by the following
characteristics:
• virtual cameras: the size of each image is 640 by 480

pixels, the frame rate of the sequence is 60 Hz and the
field of view is 50 deg by 40 deg;

• motion of the virtual cameras: the trajectory of the
mobile to which the cameras are fixed is planar: first
linear, then circular, with radius 15 m; the tangential
velocity is continuous and slowly variable, from 0.5
m/sec to 0.6 m/sec; the trajectory lasts 16 sec;

• virtual scene: it consists of a plane orthogonal to the
plane of camera motion; the observed plane is virtually
painted with a gray pattern, whose intensity varies in
horizontal and vertical directions as a sinusoid function;

• generation of the images: each pixel of an image has an
integer value varying from 1 to 256, directly depending
on the intensity of the observed surface in the direction
indexed by the pixel;

• stereo-vision system: the distance between the optical
centers is h = 8 cm; the segment joining the centers is
tangent to the trajectory at its middle point to ensure
that the linear velocity of the mobile is tangent to the
trajectory; the optical axis directions form an angle
δθc = 0 or 1.6 deg.

Fig.3 summarizes the virtual setup used to generate the
sequence of images. Notice that, contrary to the model,
the tangential velocity is slowly variable: the following
simulations intend to show that the proposed method can
overcome the limitations of the model.

Fig. 3. Virtual setup used to generate the synthetic sequence of images
used in the simulations.

Fig.4.a) shows the velocity profile.
In the first simulation, the optical axis directions of the

two cameras are perfectly aligned. In this case, (8) simply
writes

dB

dt
= Vxb

B2 −B1

h
+ θ̇c

∂B

∂θc
(20)

The observer (9) is tested on that sequence and gives a
velocity estimate Vest: the error Vest − Vxb

is represented in
Fig.4.b). After a rapid convergence step, the error stays below
0.002 m.s−1.

In the second simulation, the optical axis are slightly
misaligned, as they most certainly are in real systems: δθc =

a)

b)

c)

Fig. 4. a): Tangential velocity Vxb : the trajectory is linear during the first
8 sec, then circular with radius 15 m. b): Error Vest − Vxb of estimation
of the tangential velocity in the first simulation, where the optical axis are
perfectly aligned. c): Error Vest−Vxb of estimation of the tangential velocity
in the second simulation, where the optical axis form an angle of 1.6 deg.

1.6 deg, corresponding to a shift of 20 pixels in an image
that needs to be compensated as in (8). The observers yields
a velocity estimate whose difference to the real velocity is
represented in Fig.4.c). After a rapid convergence step, the
error stays below 0.015 m.s−1.

Note that in both simulations, the error of estimation seems
to be larger in the second phase of the trajectory (the circular
trajectory), even though it stays bounded: this phenomenon
is explained by the fact that the tangential velocity varies
more rapidly in this phase.

C. Experimental results

To realize the experiments, a stereo-vision system was
fixed on a motorized trolley traveling back and forth on a 2
meter-linear track pictured in Fig.5. The encoder of the motor
enables to know the position of the trolley with a micrometric
resolution. The stereo-vision system is composed of two
Flea2 - Point Grey Research VGA video cameras (640
by 480 pixels) synchronized at 20.83 fps, with a Cinegon
1.8/4.8 C-mount lens, provideing an angular field of view
of approximately 50 by 40 deg. The stereo-vision system is
oriented orthogonally to the track.

The environment observed by the stereo-vision system is
static, composed of random objects in an office space in a
depth range of a few centimeters to 3.5 meters, figuring in
Fig.6.

Note that the scene is uniquely lit up by electric light
plugged on the mains, with frequency 50 Hz. The acquisition
frame rate of the cameras produces an aliasing phenomenon
on the video data at 4.17 Hz. In other words, the lighting of
the room is variable, at a frequency that can not be easily
ignored, which puts (1) and the governing equation (3) in
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Fig. 5. Motorized trolley and track used to generate a linear motion for
the experiments.
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Fig. 6. Environment filmed by the stereo-vision system: an example of
image processed for the experiment.

the wrong. However, the impact of this temporal dependance
in the equations can be reduced by a normalization of the
intensity of the images such as

y(x, y) =
y(x, y)

ȳ
(21)

where x and y are the horizontal and vertical indexes of the
pixels in the image, y(x, y) is the intensity of this pixel and
ȳ is the mean intensity on the entire image.

The optical axis of the two cameras are slightly mis-
aligned, forming an angle estimated to be 1.57 deg: this is
taken into account in the approximation of ∂B

∂xb
as in the

second simulation presented in IV-B.
With consideration of all these elements, the observer (9)

provides an estimation Vest of the linear velocity of the
trolley, which is on the other hand provided by the motor
(Vmes) at a frequency of 500 Hz. Both are plotted in Fig.7.

Note that in spite of the rapid changes of sign of the
velocity, the estimation quickly converges and follows every
variation. In phases of constant velocity, the error does not
reach zero, but noise remains on the same order of magnitude
that the uncertainty of the measure (most of it due to lighting
variations).
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Fig. 7. Linear velocity: measured (in red) and estimated (in blue).

TABLE I
TABLE OF ESTIMATION ERRORS FOR VARIOUS RESOLUTIONS

Resolution Error
640x480 6.80%
320x240 6.82%
160x120 6.84%
80x60 6.82%
40x30 7.45%
20x15 9.22%

V. ROBUSTNESS OF THE METHOD

In this section, we demonstrate that the method is robust
even when dealing with low resolution image data or with
blurred images. The sequence of paired images processed
was generated with the open source 3D computer graphics
software Blender c©. The scene is a simple 10 by 4-meters
wall painted with a picture containing sharp contrasts. The
cameras travel 14 meters on a line parallel to the wall, with a
constant velocity; their optical axis are oriented orthogonally
to the wall. The sequence lasts 4 seconds. To compare the
performance of the method for the different sequences, we
use the following error, expressed in percent:

E =

∫ T

t=0

|V̂ (t)− V (t)|
|V (t)|

dt (22)

For the image sequence used as a reference , the resolution
is 640x480 pixels, and the exposure time is 0 (in practice,
negligible compared to the sampling time). The reference
error is then 6.80 %, most of which being due to the
convergence lag.

A. Robustness to low resolution

To show that high resolution is not required to provide
a good estimation of the velocity, we will process different
sequences corresponding to the same motion and different
image resolutions. The field of view stays the same but
each pixel corresponds to a larger angular part over which
brightness is averaged. The errors associated to estimations
for each resolution are gathered in Table I.

These results highlight that even for very low camera
resolutions, the proposed method estimates the velocity with
a very good accuracy.

B. Robustness to blur

Fast moving objects appear to be ”moving”, that is, blurred
by their own motion in a movie frame if the distance traveled
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TABLE II
TABLE OF ESTIMATION ERRORS FOR VARIOUS EXPOSURE TIMES

Exposure time Error
0 6.80%

0.25 6.89%
0.5 6.88%

0.75 6.89%
1 6.91%

1.25 7.24%

in the field of view of the camera during the exposure time
is significant. Thus, for a given speed, blur appears when
increasing the exposure time. To show that this method is
not sensitive to blur, i.e. to high speed, we process different
sequences corresponding to the same motion and different
exposure times, expressed as fractions of the sampling time
which is constant. The errors associated to estimations for
each exposure time are gathered in Table II.

These results highlight that even for significant blurring
effects, the proposed method estimates the velocity with a
very good accuracy.

VI. CONCLUSIONS AND FUTURE WORKS

In section II, the notations of the problem were introduced
for the camera, the field B obtained by weighting and aver-
aging of the brightness perceived by a camera was defined,
and the governing dynamics equations for B were detailed.
In section III, the method used to adapt the equations to
estimate the projection Vxb

of the velocity on an axis were
described: specifically, the approximations and techniques to
measure the derivatives of B were detailed and the measuring
apparatus was consequently deduced; an observer for Vxb

was proposed. In section IV, the choice of the convolu-
tion kernel ϕ was considered, and results of simulations
and experiments proved the validity of the method. In V,
we showed on synthetic sequences the robustness of this
approach to blur and downsampling. In other words, this
approach seems to provide even from low resolution image
data an accurate estimation of a large range of velocities.
It only requires two low-quality cameras combined with a
gyroscope, while Structure-from-Motion methods either em-
ploy a high-resolution binocular system or a high-resolution
monocular system combined with an additional sensor for
scale factor estimation. The next step would be to actually
embed the measuring apparatus on a ground vehicle and to
compare the estimated velocity to a reference, which is by
now the missing element.
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