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Abstract— In this paper, we report results of investiga-
tions conducted on a mobile robotic experiment developed
at the DGA Laboratoire de Recherche en Balistique et
Aérodynamique in a joint work with École des Mines. The
vehicles under consideration are in fact similar to unicycles.
We investigate a flatness based approach (combining open-loop
optimization and closed loop tracking) and gyroscopic forces
control laws. Experimental results are exposed. A theoretical
proof of obstacle avoidance for a gyroscopic scheme is pre-
sented.

INTRODUCTION

The context of our study is the network centric warfare (as

defined in [9]) program “Bulle Opérationnelle Aéroterrestre”

(BOA), led by the Délégation Générale pour l’Armement

(DGA) for the French Department of Defense. It is a vast

project in which ground, airborne and marine units are asked

to cooperate in order to fulfill a wide range of possible

missions. In particular, autonomous vehicles are asked to

bring fire power, communications, intelligence. Among oth-

ers, several mission goals are out-of-sight shooting, robust

telecommunication, target laser designation in dangerous

areas, data-link, and hardware supply. A typical behavior

of such cooperation in the BOA environment is depicted

in Figure 1. For this project, it was decided to construct

several prototypes to stress the needs in missions of military

interest. Interestingly, automatic control appears as one of the

key challenges. In practical operations, there is definitely a

need for real-time control laws for guidance of autonomous

vehicle. In facts, it is desired to alleviate the human operators

burden. The more autonomous the vehicles are, the better.

Two problems are identified: satisfy the mission goals and

deal with field uncertainty. Among these uncertainties are

obstacles that can not be accounted for at the mission

preparation level (these obstacles may have appeared since,

or may be invisible or hidden to surveillance devices). There

can also be physical disturbances such as wind gusts, and

unknown ground to wheels contacts to name a few. In this

context, we are designing a twofold experimental setup. The

first part we present here is a ground platoon. So far, we have

focused on a single vehicle (UGV). Coordination issues are

out of the scope of our current investigations. The second half

is a team of small-sized helicopters. They will be presented
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Fig. 1. A typical coordinated airborne and ground platoon as envisionned in
the BOA projet. c©BD MEDIAS for Délégation Générale pour l’Armement
(DGA).

in a forthcoming publication. In this paper, we focus on

a simple military type scenario. Its consists of reaching a

single target, possibly by following a prescribed path. One

or several obstacles can be encountered. They are unknown

but their size is upper bounded. The control laws that we

propose have to deal with the vehicles input constraints,

mission objectives, and have no information from outside

once the mission is started. Onboard sensors are the sole

information available to avoid unknown obstacles. In this

paper we focus on two different control techniques, that we

would like to combine in the future. The first one is an off-

line optimal trajectory generation technique complemented

by a real-time closed loop controller. The second one is a

local obstacle avoidance technique using gyroscopic forces

as presented in [2]. Combining the two approaches could

be done in the following way. Before an obstacle is met,

the vehicles should track in closed loop (using on board

sensors) the optimal trajectory computed during the mission

preparation phase. When an obstacle is detected, the control

should switch to the obstacle avoidance phase, slowing down

and passing by the obstacle. Once a point on the initial

trajectory is approximatively reached, the controller should

switch back to the first control phase. Certainly, designing

appropriate switching strategies is not an easy task and will

require further investigations.

The paper is organized as follows. In section I, we

briefly describe the ground vehicle, its dynamics and onboard

systems (including CPU and sensors). The vehicle under

consideration (a Pioneer IV from MobileRobotsTM) has the
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Fig. 2. Pioneer IV vehicle (side view and front view). Four independent
wheels, with 16 sonars, one axis gyroscope, odometers, wireless datalink,
and onboard CPU.

same dynamics as the unicycle. In section II, we use its

flatness property to parameterize and optimize its trajectories.

Constrained minimum time problems are considered. Then,

we use a dynamic linearizing feedback for tracking pur-

poses. Experimental results are presented. In section III, we

consider gyroscopic forces controllers. Using second order

schemes (from the literature [2]), we detail experimental

results. A known problem is the possibility of zero velocity

collision (early pointed out in [2]). For that reason, we

propose a first order controller and actually prove a new

result concerning convergence under assumptions on the

size of the obstacle. This constructive proof can serve as

a guideline for tuning.

I. VEHICLES UNDER CONSIDERATION

A. Vehicles description

Our experimental testbed includes three MobileRobotsTM

Pioneer 3-AT vehicles similar to the one depicted in Figure 2.

These vehicles have 4 electrically powered independent

wheels and are capable of running outdoor. The onboard

system consists of a Pentium III 800MHz based PC104

system running under Linux, 16 sonars (8 forward and 8 rear)

located on the sides of the main frame (above the wheels),

a one-axis gyroscope, and a wireless network adapter. It is

possible to derive localization information from odometers.

Each vehicle is equipped with in-wheels 100 tick encoders

with inertial correction to compensate for skid steering.

By default, the vehicle does not possess any GPS. We

decided to install a uBloxTM TIM-LR with added antenna.

As will be detailed next, we designed our own filter for

GPS/odometer/gyroscope hybridation.

B. Vehicle dynamics

Assuming wheels on the same side of the vehicle have

the same velocity (i.e. the vehicle behaves like a tank) it

is possible to model the dynamics under the nonholonomic

unicycle form studied in [5], [10]




ẋ =
(v1 + v2)

2
cos θ, ẏ =

(v1 + v2)

2
sin θ,

θ̇ =
(v2 − v1)

2l

(1)

where x, and y denote the position of the vehicle, θ denotes

its orientation angle, and v1, and v2 are the speeds of the left

side and right side wheels, respectively. This model can be

experimentally validated with fitted coefficient l = 294 mm.

Indoor maneuvers are consistent with motions calculated

through numerical integration of (1). Typical errors are of

10 cm for a 4 m wide curves and straight lines trajectory

over 60 s.

II. TRAJECTORY GENERATION AND TRACKING

A. Open loop design

The two inputs system (1) is flat [4], i.e. its trajectories

can be summarized by those of two flat outputs x and y.

Considering x and y, one can recover the other variables,

i.e. the remaining state θ and the two controls, from x, y
and their derivatives. Explicitly,

θ = arctan(
ẏ

ẋ
) (2)

v1 =
√

ẋ2 + ẏ2 − l
ÿẋ − ẏẍ√
ẋ2 + ẏ2

(3)

v2 =
√

ẋ2 + ẏ2 + l
ÿẋ − ẏẍ√
ẋ2 + ẏ2

(4)

Thanks to this property, constrained trajectory optimization

can be performed using the approach proposed in [6]. The

flat outputs histories are then parameterized using B-splines

functions, and, in considered cost functionals and constraints

variables, are substituted with their expressions (2), (3),

and (4). Here, we consider two different constrained min-

imum time problems.

1) Optimal trajectory along a prescribed path: The first

problem we consider corresponds to the case of a well

described path (e.g. a road) the vehicle has to follow as

fast as possible, under its dynamic constraints. Given a

path [0, 1] ∋ s 7→ (xref(s), yref(s)) ∈ R
2, it is desired to

determine T and [0, T ] ∋ t 7→ σ(t) ∈ [0, 1] solution of the

following optimal control problem

min
σ,T

T

subject to the following contraints (where ǫ is a strictly

positive constant)




T > 0, σ ∈ C2[0, T ], σ(0) = 0, σ(T ) = 1,

∀t ∈ [0, T ], σ̇(t) > 0,

|vi(t)| ≤ vmax i ∈ {1, 2},

|v̇i(t)| ≤ Amax i ∈ {1, 2}

(5)
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The last inequality can be omitted because (v1, v2) does

not need to be differentiable (it is convenient to include

this last constraint to obtain smooth control histories). If

obstacles locations are known, they can be included as state

constraints.

2) Free trajectory planning: In a second setup, we op-

timize over the possible trajectories originating in a given

point A, reaching a desired target point B, and avoiding

known obstacles. It is desired to find the solution of the

following optimal control problem

min
x,y,T

T

subject to the constraints (where ǫ is a strictly positive

constant)




T > 0, (x, y) ∈
(
C2[0, T ]

)2
,

(x(0), y(0))T = A, (x(T ), y(T ))T = B,

∀t ∈ [0, T ], (x(σ(t)), y(σ(t))) /∈ obstacles,

|vi(t)| ≤ vmax i ∈ {1, 2},

|v̇i(t)| ≤ Amax i ∈ {1, 2},

ẋ2 + ẏ2 ≥ ǫ

The last constraint is added to avoid the singularity of our

dynamic feedback controller around zero velocity.

3) Numerical treatment: Those two problems can be

rewritten using only the parameter T and the flat outputs

x and y or σ (in the first problem) by substituting v1 and

v2 in the constraints by their expressions in terms of first

and second derivatives of the flat outputs (3) and (4). In the

case of constraints given by (5), v1 and v2 are computed

through the time derivatives of t 7→ xref (σ(t)) and t 7→
yref (σ(t)). Then, the variables are represented by basis func-

tions (typically B-splines). The induced nonlinear program

(NLP) can be solved using standard packages (e.g. NPSOL

or SNOPT). Compared to a standard collocation approach,

in which every state and control variables is represented by

distinct basis functions, the proposed substitution technique

yields a reduction in the number of variables. This positively

impacts on the computational burden of NLP solving (as

noted in [7], [1]). Typically, using B-Splines and the Matlab

Optimization toolbox, either problem can be solved with a

reasonable accuracy in less than 5 sec on a 1GHz PC (this

time increases for complex trajectories where the number

of B-splines coefficients can get large). Interestingly, this

remark stresses the possibility of real-time trajectory updates

as proposed in [8] (for receding horizon control techniques

or on-demand mission reconfiguration). Finally, once the

optimal transient time T and flat outputs histories (x, y) are

found, the open-loop control values are recovered from (3)

and (4).

B. Tracking

Although the unicycle model is experimentally quite ac-

curate, as noted in Section I-B, there is definitely a need

for closed loop control in our experimental setup. The

main unmodelled disturbance is slipping (especially during

outdoor maneuvers). The previous open-loop strategy can

be complemented by the following closed loop dynamic

controller. Considering second derivatives of the flat outputs

we get

ẍ = u̇1 cos θ − u1u2 sin θ, ÿ = u̇1 sin θ + u1u2 cos θ

where we note u1 = v1+v2

2 and u2 = v1−v2

2l
. There is

a globally well-defined change of coordinates between the

vector (ẍ, ÿ)T and (u̇1, u1u2)
T , though the θ angle rotation

matrix. Imposing stable dynamics of the form

ẍ = ẍsp − k1(x − xsp) − k2(ẋ − ẋsp) (6)

ÿ = ÿsp − k1(y − ysp) − k2(ẏ − ẏsp) (7)

can be achieved through the following dynamic feedback

u̇1 = cos θẍ + sin θÿ, u2 =
1

u1
(− sin θẍ + cos θÿ)

where ẍ and ÿ are substituted with the following expressions

derived from (6) and (7)

ẍ = ẍsp − k1(x − xsp) − k2(u1 cos θ − ẋsp)

ÿ = ÿsp − k1(y − ysp) − k2(u1 sin θ − ẏsp)

This dynamic feedback controller has a single singularity

at u1 = 0. This corresponds to a loss of controllability when

the vehicle speed is zero. This singularity is avoided, in the

open-loop design, by the constraints specified in the optimal

control problem.
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y
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Closed-loop

Fig. 3. Indoor closed loop tracking of an optimal trajectory. One can
observe the open-loop drift of the vehicle.

C. Indoor results

A complex manoeuver can be accomplished indoor. In

Figure 3, the vehicle has to avoid three obstacles, make a

turn and eventually reach a prescribed target. Indoor, only

odometers and the gyroscope can be used on board to deter-

mine the position of the vehicle. As can be seen in Figure 3,

the open-loop behavior shows a significant drift, probably

due to unaccuracies in the slipping laws during sharp turns

(and also to unmodelled dynamics such as wheels inertia,

and electric drive current saturations). It is overcome by the
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Fig. 4. Spinning around a tree. Y axis is pointing North. X axis is pointing East.

Map

VEHICLE

Waypoints selection

REMOTE PC

Minimum time
Trajectory generation

Wifi

GPS Odometers

Hybrid
Position

Gyroscope

Controller Electric drives

(xsp, ysp)

Fig. 5. Human machine interface. Trajectory is designed on a remote PC according to user’s requests (waypoints selected on a map) and minimum time
transients control objectives. On board the vehicle, GPS sensors and odometers feed a hybrid positioning system used in closed loop to actuate the electric
drives.

closed loop feedback presented in Section II-B. However,

one should notice that the measurements do not guarantee

that the actual position of the vehicle matches the reference

trajectory. In facts, the odometers often provide misleading

information, especially during large maneuvers. For long

term outdoor experiments, they need to be complemented

by absolute measurements such as those from a GPS. This

issue is addressed in the following section.

D. Outdoor results

The proposed methodology was tested outdoor. The Pio-

neer vehicle was equipped with an onboard GPS (a uBloxTM

TIM-LR). Its signals were fed into an observer along with

signals from the odometers and the gyroscope to reconstruct

the vehicle position. A Matlab-based human machine in-

terface was designed following the structure presented in

Figure 5. On a remote PC, several waypoints are chosen

on a map. Automatically, a smoothing procedure defines a

reference path that is fed into the optimal trajectory gen-

eration software implemented in Matlab. Once the optimal

trajectory is found, it is sent to the remote vehicle through

the Wifi datalink under the form of a collection of sampled

data. Then, the vehicle starts tracking this trajectory. Typical

obtained results are depicted in Figure 4 and in Figure 6. In
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Fig. 6. Turning around a corner. Y axis is pointing North. X axis is pointing East.

these figures, several plots indicate the quality of tracking.

Noticeably, neither the GPS nor the odometer can be used as

sole positioning system for sake of closed loop control. The

GPS suffers from low pass drift, noises, and jumps, while the

odometer signal is altered by a long term drift. Both provide

misleading information in a closed loop context. Yet, it is

possible to reconciliate the data as we did and obtain an

estimate that is suitable for tracking the reference trajectory.

These observations clearly appear when inspecting results

presented in both Figure 4 and 6.

III. GYROSCOPIC FORCES

The previously presented open-loop and closed-loop con-

trol strategies do not take into account obstacles that are

not known in advance. Though it is possible to update the

optimal path along the way (e.g. in a receding horizon

fashion), once an obstacle is discovered, we prefer to use

a control law dedicated to deal with these obstacles found at

close range. An ideal candidate is the so-called ”gyroscopic

forces” law [2], [3]. As will appear next, while being very

effective and simple to implement, they do not guarantee

collision avoidance. In the following, after recalling the

fundamentals of this technique, we propose an alternate

formulation (first order) for which we prove convergence and

obstacle avoidance.

A. Notations

We consider a vehicle, a target and a single circular

obstacle that must be avoided. In the following, we note

R the obstacle radius, r the detection radius, A the center

of the obstacle, B the most distant point from the origin

in the disc C(A, r), q = (x, y)T the position of the center

of gravity of the vehicle, qT the target point. Further, dq ,

(A−q)‖A−q‖−R

‖A−q‖ ∈ R
2 denotes the vector difference between

q and its orthogonal projection onto the obstacle, ε is a scalar

valued function defined by

q 7→ ε(q) =





− sign det(qT − q, dq)
if ‖dq‖ ≤ (r − R)
and |arg(q − qT )| ≤ arcsin(R/OA)

0 otherwise

We use Vmax a (positive) avoidance constant. Two geometric

points play a particular role in the convergence analysis.

These are noted T1, and T2 (see Figure 8). They are located

at the intersections of the circle C(A,R) and the two tangent

lines originating in 0. Finally, we note H = (OA)∩C(A,R).

1) Proposed gyroscopic scheme: The second order

scheme usually reported in the literature is given in (8)

(where ∧ stands for the logical AND)

q̈ =

(
−2 −w(q, q̇)

w(q, q̇) −2

)
q̇ − (q − qT )
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w(q, q̇) =





πVmax

d(q)
if {d(q) ≤ r} ∧ {d(q).q̇ > 0} ∧ {det(d(q), q̇) ≥ 0}

−
πVmax

d(q)
if {d(q) ≤ r} ∧ {d(q).q̇ > 0} ∧ {det(d(q), q̇) < 0}

0 otherwise

(8)
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Fig. 7. Indoor experimental results using gyroscopic forces. Circular ob-
stacles are represented with their detection shells. Trajectories can bifurcate
due to measurement noises.
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Fig. 8. Notations for gyroscopic forces control law.

with w given in (8). We tried this method in practical ex-

periments with good success. Typical obtained (closed-loop)

trajectories are reported in Figure 7. The method appears

to be quite sensitive to sensor noises. There can be some

bifurcations as observed in this same figure, depending which

side of the vehicle the obstacle is first detected on. Simulation

results proposed in [2], [3] are also very interesting and show

the versatility of the approach. But, there are possibilities of

zero velocity collisions (one can refer to [2] for a discussion

on this). These are unacceptable in practice because they

would result in a complete stop of the vehicle. To address this

problem, we propose a first order scheme and actually prove

its convergence. It should be soon tested on the experiment.

B. Obstacle avoidance result

Our goal is to prove that under a condition on Vmax,

irrespective of initial conditions, the following differential

equation has a unique solution that exponentially converges

toward the target without intersecting the obstacle

q̇ = (qT − q) + ε(q)Vmax

(
0 −1
1 0

)
(qT − q)

For sake of analysis, the target is set to 0 and the obstacle

center position is set to (1, 0). Other configurations can be

easily obtained by appropriate homothetic transformation,

translation and/or rotation. Under this simplifying assump-

tion, we are left with the following equation

q̇ =

(
−1 ε(q)Vmax

−ε(q)Vmax −1

)
q (9)

The proof is organized as follows. As can be easily seen,

the system is globally exponentially stable in the absence of

the obstacle. First, we analyse the convergence to zero of (9).

This results in Proposition 1. Then, we construct a positively

invariant set ∆ (see Definition 1) that excludes the obstacle.

In a first move, we focus on a particular trajectory that serves

as a boundary for ∆. We prove that, under an explicit tuning

condition, this trajectory does not intersect with the obstacle

in Proposition 2. Finally, we prove in Theorem 1 that ∆
is positively invariant by equation (9), and that, eventually,

every trajectory starting in ∆ converges to the target.

Proposition 1: Every trajectory of (9) asymptotically con-

verges to 0.

Proof: Note V (q) = 1
2‖q‖

2
. It follows that

V̇ (q) = 〈q,−q − ε(q)Vmax

(
0 −1
1 0

)
q〉 = −2V (q)

and, then,

‖q(t)‖ = ‖q(0)‖ exp(−t) (10)

which proves the result.

A more difficult task is to guarantee that trajectories do

not collide with the obstacle. We now construct a set being

positively invariant by (9). Its boundaries are a particular

trajectory on one side, and its symmetric curve on the other

side. To prove that it does not contain trajectories intersecting

the obstacle, we compute lower bounds on angles of rotation

and conclude by contradiction. This constructive proof yields

a sufficient lower bound on Vmax.

a) A particular trajectory T : We consider T the trajec-

tory originating in B (see Figure 8), i.e. the set of points q(t),
t ∈ [0,+∞[ solution of (9), with q(0) = B. Equation (9)

can be analytically solved under the form

q(t) = (1 + r) exp(−t) exp(−ı(tε(q)Vmax)) (11)
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This trajectory does not intersect the tangent line (OT1). It

can not cross the bisecting line (OA) either. To do so, the

argument of q need to decrease. Yet, in this zone of the

plane, the argument is strictly increasing as can be seen in

equation (11) with ε = 1. In summary, T entirely lies in the

inner sector ((OT1), (OA)). This allows us to introduce the

following definition.

Definition 1: We denote by ∆ the complementary set of

the interior of the closed curve constructed with T and the

curve symmetrical to it with respect to the bisecting line

(OA). ∆ is a closed subset of R
2.

As we will prove it, ∆ is positively invariant by equation (9).

Provided that the initial condition is chosen inside ∆, the

trajectory avoids the obstacle. To prove this point, we need

to show that the obstacle has an empty intersection with ∆.
b) A property of T :

Proposition 2: Trajectory T does not intersect the obsta-

cle provided the following inequality holds

Vmax ≥

√√√√−1

2
+

√
1

2
+

π2R2

log2( 1+r
1+R

)
(12)

Proof: We proceed by contradiction. Assume that the

trajectory intersects the circle C(A,R). Then, there exists a

unique first-time intersection (t2, q2) ∈ R
+ \ 0 × R

2 such

that q2 = q(t2) solution of (9) is on C(A,R). Also, there

exists a unique (t1, q1 = q(t1)) ∈ R
+ \ 0 × R

2 defined as

follows. Consider [0, t2] ∋ t 7→ Q(t) = ||q(t)−A|| ∈ R. This

mapping is continuous over the compact set [0, t2]. Thus, the

set Q−1(r) , {t s.t. Q(t) = r} is compact and non-empty

(it contains 0 by construction). Therefore, it has a maximum

element t1. By construction, the set {q(t), t ∈ [t1, t2]} lies

in between the two circles C(A,R) and C(A, r) (we call

this zone the “detection shell”). We now look for a lower

bound on t2 − t1 to compute a lower bound on the time

spent inside the detection shell. Over [t1, t2], the argument

of q(t) is increasing, as implied by (9) with ε = −1. Let us

compute a lower bound for
||q1||
||q2||

. Consider [0, arcsin(R)] ∋

α 7→ z(α) ∈ R as the module of the point of the circle

C(A,R) with α argument and largest module. This point is

represented in Figure 9. Simple calculations yields

z(α) = cos(α) +
√

cos2(α) + R2 − 1 (13)

Let us define q̃2 as the intersection of the line (0q1) with

C(A,R). Recalling the mapping α 7→ z(α) is decreasing,

one can derive
||q1||
||q2||

≥ ||q1||
||q̃2||

, since 0 ≤ arg(q1) = arg(q̃2) ≤

arg(q2) ≤ arcsin(R/OA). Further, after several lines, one

can derive

||q1||

||q2||
≥

||q1||

||q̃2||
=

cos(α) +
√

cos2(α) + r2 − 1

cos(α) +
√

cos2(α) + R2 − 1

≥
1 + r

1 + R

Using equation (10), we get e−t1

e−t2
= ||q1||

||q2||
≥ 1+r

1+R
. Therefore,

t2 − t1 ≥ log(
1 + r

1 + R
) (14)

α

z (α)

A

R

x

y

Fig. 9. Notations for the gyroscopic forces control scheme.

Using this lower bound for the time spent in the detection

shell, we now look for a lower-bound on the distance ‖q(t)−
A‖ when t varies over [0, t2]. We will prove that this bound is

larger than R which contradicts the intersection assumption.

Let us consider Tout = t1+ 1
Vmax

arcsin(R) ≤ t1+ 1
Vmax

π
2 .

When t varies from t1 to Tout, the minimum distance

mint∈[t1,Tout] ‖q(t) − A‖2 from q(t) to the obstacle can be

lower bounded by

1 + min
t∈[t1,Tout]

f(t)

where f(t) = (1 + r)2e−2t − (1 + r) 2e−t

1+r
cos((t− t1)Vmax).

By construction, Tout provides a rotation which guarantees

that q(Tout) reaches (OT1). Then, one must have f(Tout) ≥
f(t2). Therefore, f reaches its minimum in the open interval

]t1, Tout[. The unique minimum tmin satisfies ḟ(tmin) = 0,

i.e.

(1 + r)e−tmin =

cos((tmin − t1)Vmax) + sin((tmin − t1)Vmax)Vmax

After several lines, one finally derives

min
t∈[t1,Tout]

f(t) = (1 + V 2
max) sin2((tmin − t1)Vmax)

Now, one can choose to set

Vmax ≥

√√√√−1

2
+

√
1

2
+

π2R2

2 log2( 1+r
1+R

)

By definition, r > R, and thus, 0 < log( 1+r
1+R

)Vmax.

From here, we can consider two exclusive situations. Either

log( 1+r
1+R

)Vmax > π/2 (case 1), or log( 1+r
1+R

)Vmax ≤ π/2
(case 2). In the first case, the total rotation over the time

interval [t1, t2] guarantees that the trajectory reaches (OT1).
The trajectory does not enter the circle. In the second case,

we proceed as follows. By construction of t1 and t2, tmin ≥
t2. By equation (14), tmin − t1 ≥ log( 1+r

1+R
). A lower bound

for f(t) is thus given by

min
t∈[t1,Tout]

f(t) ≥2(V 2
max + 1) sin2(log(

1 + r

1 + R
)Vmax)
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Using that x ≥ sin(x) ≥ 2
π
x for x ∈ [0, π

2 ], we derive the

following lower bound for f(t) on [t1, t2]

min
t∈[t1,Tout]

f(t) ≥ R2

This contradicts the existence of an intersecting point q2.

Both cases are inconsistent with the original intersection

assumption. This concludes the proof. The proposed con-

dition (12) guarantees obstacle avoidance.

We are now interested in trajectories originating in the line

sector (OA,OT2). We remark from (11) that the argument

is always decreasing along these, and that the norm is also

always decreasing. Let us consider a given point in the line

qt

T1

A
B

r

R

T2

∆ x

y

Fig. 10. Invariant set and limit trajectories.

sector (OA,OT2), outside ∆ and look for the trajectory

originating at this point.

Definition 2: We note S the symmetry with respect to the

horizontal axis (Ox).
Proposition 3: Consider a point M strictly below the x

axis and outside ∆. Consider S(M). The trajectory T (M)
originating in M is symmetrical to the trajectory originating

in S(M). We have

S(T (M)) = T (S(M))
Proof: The symmetry S has an analytical expression

S

(
x
y

)
=

(
x
−y

)
. The differential equation (9) shows

a difference in ε when one crosses the x axis. For all t ≥ 0,

we note Tt(M) the point of the trajectory initiated in M
after time t. For all t ≥ 0, we have

S(Tt(S(M)))

=S

(∫ t

0

(
−1 εM (t)Vmax

−εM (t)Vmax −1

)(
xM

−yM

))

=Tt(M)

Let us now consider a trajectory starting from a point below

the x axis. Using the result above and (2), we can deduce

that the trajectory does not intersect the boundary of ∆. The

obstacle is thus avoided.

Theorem 1: Consider equation (9). Provided that Vmax

satisfies (12), and that the initial condition is chosen in-

side ∆, the trajectory avoids the obstacle and exponentially

reaches the target 0.

IV. CONCLUSION

As a conclusion, we could like to stress once again the

importance of combining in practical experiments the two

presented control strategy. We believe that with short-range

detection devices, the modified gyroscopic forces approach

will adequately complement the trajectory optimisation strat-

egy. Mathematical study of this combination (in terms of

performance and convergence analysis), as well as actual

implementation are the next goals of our research program.

Acknowledgement: We thank Gaël Desilles for provid-
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