
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Study on the eddy current damping of the spin dynamics of space
debris from the Ariane launcher upper stages

N. Praly a,n, M. Hillion a, C. Bonnal b, J. Laurent-Varin c, N. Petit d

a SYSNAV, 57 Rue de Montigny, 27200 Vernon, France
b CNES, DLA, 52 rue Jacques Hillairet, 75612 Paris Cedex, France
c CNES, DCT/SI/GS, 18 avenue Edouard Belin, 31401 Toulouse Cedex 4, France
d MINES ParisTech, CAS, 60-62 Boulevard Saint Michel, 75272 Paris Cedex 06, France

a r t i c l e i n f o

Article history:

Received 15 September 2011

Received in revised form

2 March 2012

Accepted 4 March 2012

Keywords:

Space debris

Eddy currents

Damping of spin motion

a b s t r a c t

This paper addresses the topic of damping of the spin dynamics of a spatial debris

orbiting around the Earth. Such debris, which can consist of parts of heavy launchers

such as the Ariane rocket under consideration in this article, are impacted by torques

generated by eddy currents as their conducting non-ferromagnetic body orbits through

the Earth magnetosphere. Several previous works have focused on describing this

induction phenomenon and have proposed analysis of empirical observations of this

particular and important effect which has attracted much attention since the number of

spatial debris has emerged as a problem for the future of space programs, especially in

low orbits. In this paper, we present a relatively comprehensive modeling of the

induction phenomenon, by means of Maxwell’s equations inside the conducting and

non-ferromagnetic body. Through the generalized Ohm’s law, we show how one can

obtain a partial differential equation with Neumann’s boundary conditions problem

that, once solved, e.g. through a finite elements method, yields the values of induced

currents and braking torques. The case of a depleted upper stage of a heavy launcher,

having a cylindrical shape and thin walls is particularly studied. We show a methodol-

ogy to estimate the decay-rate of the spinning velocity, which is proven to satisfy a

first-order asymptotically stable linear dynamics. Special cases consisting of typical

orbit of space debris are treated.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The number of man-made space debris orbiting around
the Earth has steadily increased since the early days of space
programs. It seems that a critical point has been reached in
2007 after the orbital explosion of the Chinese satellite ASAT
which was followed, in 2009, by the collision of the Iridium

33 satellite and Cosmos 2251 stage. These incidents are
reported to have generated more than 1300 debris of
various sizes and shapes [19]. Furthermore, future collisions
between debris are expected to generate an increasing
number of smaller debris and significantly raise the risks
of damaging impacts on satellites and other spacecrafts,
especially in low orbits. This problem has spurred a recent
and strong interest for developing debris deorbiting tech-
nologies, in hope of alleviating the risk by removing, at least,
the largest or the most dangerous debris. Various candidate
solutions have been proposed. The vast majority of them
consider the capture of the debris by a chaser prior to the
deorbiting. In particular, nets [20], tethers [7], solar sails [10]
and boosters [13] have been considered. Most of these
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proposed techniques have obvious difficulties in capturing
rapidly rotating objects. Indeed, it is quite difficult to attach
a tether device to a spinning body, and catching a spinning
debris with a net can turn out to be troublesome, especially
in flat spin mode [16].

Interestingly, the effects of the Earth magnetic field can
help here. At each instant, the permanent magnetic field from
the magnetosphere generates eddy currents in the rotating,
conducting body. These induction-created currents generate,
in turn, a torque opposed to the rotation of the body. Then,
one can expect the initial rotation to damp over time, and
eventually, asymptotically stabilize to zero. This article
describes a method to establish the damped dynamics of
the debris in rotation, around one of its principal axes, in
Earth orbit. The shape under consideration can be relatively
general, but the case we focus on is a thin-wall cylindric
body, closed at the two ends by thin-wall half-spheres (we
call this shape ‘‘capsule’’). It is a representative for the debris
stemming from the upper stage of the heavy launcher Ariane.

To model eddy currents, we start from Maxwell’s equa-
tions and consider the generalized Ohm’s law to relate
the density of current to the external magnetic field. Using
the obtained equation inside and on the boundary of the
conducting body (which is assumed to be non-ferromagnetic
and not the subject of self-induction), we formulate a general
partial differential equations with Neumann’s boundary
conditions problem in the electric potential variable. This
problem can be solved numerically in general and analyti-
cally in simple cases. From the electric potential inside the
conducting body, one can deduce the density of induced
currents, from which the braking torque can be computed. In
general, the spin dynamics takes the form of a first-order
asymptotically stable linear differential equation in the
rotation velocity variable. The damping rate is numerically
determined through the previously discussed method. The
study is complemented by integrating this damped equation
along orbits of reference, which defines the orientation and
the strength of the exerted magnetic field. This serves to
estimate the decay-rate of the initial spin, for various orbits
and various size of debris.

The paper is organized as follows. In Section 2, we give a
brief overview of the literature on space debris, showing the
risk of collision that they generate, the nature of the debris,
their number and their density in various parts of the near-
space domain. We also give an outlook on the currently
envisioned deorbiting and capture technologies. In Section
3, we formulate the discussed Neumann problem for such a
conducting debris. The example of capsule bodies is illu-
strated. We also explain how this problem can be numeri-
cally treated with a finite-element solver. Examples of the
obtainable accuracy are given, for particular cases of con-
ducting bodies where an analytic solution exists, e.g. a
rotating sphere. In Section 4, we establish the damped
differential equation and solve it along orbits and for bodies
of particular interest. Numerical results pertaining to typi-
cally Ariane launcher upper stages are reported.

2. The problem of space debris

Since the beginning of the space conquest in 1957,
human space activity has produced a large amount of

debris. The origins of those objects are quite various:
sources range from out of service satellites to objects
produced by launch missions (last stages of launch
vehicles and separation devices to name a few). Currently,
more than 15,500 debris are cataloged in low Earth orbit
(debris larger than 10 cm [12]). Most of them orbiting in
the same orbits as satellites in use. Unfortunately, debris
are very dangerous, as a debris larger than 1 mm can
cause critical damage to a satellite. Even if most of the
recent spacecrafts have avoidance capabilities, such pro-
cedures cannot be used for debris smaller than 10 cm
because the debris cannot be detected, orbit determina-
tion and thus collision prediction are not possible.

Nearly 20 years ago, a first article was published on the
risk of cascading effects due to collisions between debris in
low Earth region. At that time, this phenomenon, since
named the ‘‘Kessler Syndrome’’ [9], was not considered as a
serious threat. Today, due to multiple collisions between
orbital bodies, this effect is well accepted and space agencies
over the world are now cooperating to develop mitigation
strategies. The current situation is, in some aspects, rela-
tively alarming because our ability to use outer space is
jeopardized in the long run. New guidelines and recom-
mended practices have been set to limit the lifetime of
objects in outer space, but older debris which are already in
stable orbits will remain there and eventually produce more
debris through collisions. Simulations have shown that the
situation cannot be improved unless some of the debris are
actually removed [12]. Reducing the number of objects is
now a necessity to ensure the sustainability of future space
activities. The most polluted area is the low Earth orbit. The
removal must begin with massive objects which have the
largest collision probabilities, typically vehicle stages and
out-of-service satellites. The shape of those objects is well-
known and offers a solid mechanical interface which is
advantageous if catching is considered. On the other hand,
attitudes of these debris are not known and the current
technologies do not allow to catch objects which rotate faster
than a few degrees per second. Launcher upper stages are
usually passivated at the end of their life in order to reduce
the risk of explosion due to overpressure in their fuel tanks,
but this venting potentially imparts to the stage of an angular
rotation which can reach a few tens of degrees per second;
such high values would probably represent a major obstacle
to the capture of the stage with current technologies. Several
of the most promising solutions baseline the capture of the
debris with a robotic arm before equipping it with a
deorbitation kit such as an electrodynamic tether [7], a drag
augmentation surface or a solar sail [10]. Other conceivable
solutions use a spacetug to push or pull the debris in the
Earth atmosphere without using a robotic arm, but never-
theless with prior control of the debris dynamics. Finally, one
can note that even contactless solutions such as the use of
laser beam to ‘‘push’’ or ‘‘destroy’’ the object may be strongly
perturbated by a high rotation speed of the debris. For the
vast majority of the conceivable solutions, high angular
velocities represent a limiting factor, unfortunately, render-
ing the most promising concepts impractical.

Since 1957, observations on the rotation period have
been made for satellites and rocket bodies. Various studies
[17,1] have shown that the rotation period exponentially
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increases over time. The increase stems from various
factors: friction due to the remaining fuel contained in the
tanks, air drag (for trajectories having altitude below
500 km) and, interestingly, eddy currents torque. This
phenomenon is of great importance for any future ‘‘catching
mission’’ because, even if a debris has a high rotation speed
at the beginning of its life, the rotation will decrease over
time. A critical question naturally emerges: how to evaluate
the damping time constant. The answer will be given in this
paper for Ariane 4 H10 stages.

To determine the decay time, we study the eddy current
torque induced in a debris rotating in the Earth magnetic
field. For simple shapes eddy currents torques have already
been calculated under the form of analytic formulas. The
case of a spherical body is treated in the historical article of
Hertz [4], while a spherical body with self-induction is
addressed in [15]. A hollow cylinder is considered in [14].
Modern numerical tools allow to consider more general
cases. The methodology that we advocate in this article can
be extended to complex shapes and various types (e.g.
altitude, inclination) of orbits.

3. Equations governing the magnetic induction
phenomenon inside a spinning conduction non-
ferromagnetic body

Induction can be described by Maxwell’s equations,
involving the potential associated to the electric and
magnetic fields, the expression of the Lorentz force and
Ohm’s law. The nomenclature we use is found in Table 1.

3.1. Fundamental equations

Before formulating the problem of induction, we intro-
duce the fundamental equations used throughout the
analysis: under the assumption of small variation in time,
Maxwell’s equations at the point M read

r
!
� E
!
ðM,tÞ ¼

rðM,tÞ

e0
ð1Þ

r
!
� B
!
ðM,tÞ ¼ 0 ð2Þ

r
!
� B
!
ðM,tÞ ¼ m0 j

!
ðM,tÞ ð3Þ

r
!
� E
!
ðM,tÞ ¼ �

@ B
!
ðM,tÞ

@t
ð4Þ

The charge conservation r
!
� j
!
ðM,tÞ ¼ 0 is consistent with

the previous Maxwell’s equations (we assume that there is
no charge created inside the conducting material). The
properties of the electromagnetic field enable us to intro-
duce the electric potential and magnetic vector potential

E
!
ðM,tÞ ¼�r

!
ðVðM,tÞÞ�

@ A
!

@t
and B
!
ðM,tÞ ¼ r

!
� A
!
ðM,tÞ ð5Þ

We also introduce the Lorentz force

F
!
¼ qð E
!
ðM,tÞþ v

!
� B
!
ðM,tÞÞ ð6Þ

With Eqs. (5) and (6), the generalized Ohm’s law is

k j
!
ðM,tÞ ¼ �r

!
ðVðM,tÞÞ�

@ A
!
ðM,tÞ

@t
þ v
!
ðM,tÞ � B

!
ðM,tÞ ð7Þ

3.2. Typical induction problem

Consider a volume O in which each point M of O moves
at speed v

!
ðM,tÞ with respect to an inertial reference frame,

through a constant magnetic field. Moreover, assume that
the self-induction phenomenon is negligible and that the
only surrounding magnetic field is the stationary Earth
magnetic field. Assume that the magnetic field is spatially
homogeneous (constant with respect to the space variable)
at the scale of an object and time invariant, so B

!
ðM,tÞ ¼ B

!
0.

The current inside this volume satisfies Ohm’s law (7). For a
stationary magnetic field, this equation yields

k j
!
ðM,tÞ ¼ �r

!
ðVðM,tÞÞþ v

!
ðM,tÞ � B

!
0 ð8Þ

The current inside O satisfies two conditions

1. r
!
� ð j
!
ðM,tÞÞ ¼ 0, 8M 2 O (charge conservation),

2. j
!
ðP,tÞ � n

!
ðPÞ ¼ 0, 8P 2 Os (the currents remain inside

the volume).

To determine the current inside O, one has to find the
potential V(M). The two previous properties, applied to the
simplified Ohm’s law (8), define a typical Neumann problem

DVðMÞ ¼ FðMÞ 8M 2 O
@VðPÞ

@n

����
Os

¼ f ðPÞ 8P 2 Os

8><
>: ð9Þ

Formally, this problem could be solved through a
Green’s function. As is detailed in [11] and [2], Green’s

Table 1
Nomenclature.

Symb. Quantity Unit

E
!
ðM,tÞ Electric field V m�1

B
!
ðM,tÞ Magnetic field T or G

rðM,tÞ Total charge density C m�3

j
!
ðM,tÞ Total current density A m�2

V(M,t) Electric potential V

A
!
ðM,tÞ Magnetic vector potential T m

kðM,tÞ Resistivity of a material O m

q Charge of a particle C

m0 Permeability of free space H m�1

e0 Permittivity of free space C V�1 m�1

o Angular velocity 1/s or rad s�1

o! Angular velocity vector ð ¼ ðoi,oj ,okÞÞ 1/s or rad s�1

v
!
ðM,tÞ Velocity m s�1

F
!
ðM,tÞ Lorentz force N

T
!
ðM,tÞ Torque N m

I Inertia tensor kg m2

O Volume of a conducting material m3

Os Surface of a conducting material m2

dO Mesoscopic volume m3

dS Infinitesimal area of surface m2

M Point of interest –

P Point of interest on Os –

n
!
ðPÞ Normal vector to Os –

O Origin of the reference frames –

G(M,M0) Green’s function –

� f Vector/coordinate written in fixed frame –

�b Vector/coordinate written in body frame –
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function G(M,M0) is unique and is defined by the follow-
ing mathematical properties:

1. G is harmonic in O except at the fixed point M0, near
which G is of the form

GðM,M0Þ ¼
1

4p9MM09
þa regular function ð10Þ

2. @G

@n
¼

1

S0
ð11Þ

where S0 is the area of the surface Os

3.
Z
Os

G dS¼ 0 ð12Þ

The potential solution of problem (9) is then

VðM0Þ ¼�

Z
O

GðM,M0ÞFdO�
Z
Os

GðP,M0Þf ðPÞ dSþconstant ð13Þ

The solution to Eq. (9) is unique up to a constant which,
classically, is of little importance because it is its gradient
which creates the current.

Once the current is known, the torque created by the
current inside O is found through the expression of the
Lorentz force (6). The torque created at a point A by an
infinitesimal volume dO with a density current j

!
ðM,tÞ

through a magnetic field B
!
ðM,tÞ is

d T
!
¼ AM
�!
� ð j
!
ðM,tÞ � B

!
ðM,tÞÞ � dO ð14Þ

Summary: At the light of the previous discussion, let us
now summarize the method to determine the torque
created by eddy currents in a conducting material:

1. Formulate simplified Ohm’s law (8) for the conducting
material (in an inertial reference frame).

2. Apply the two properties (charge conservation, ortho-
gonality of the current and the normal to the surface)
of the current inside a conducting material to the
simplified Ohm’s law to get a typical Neumann
problem on the electric potential (9), i.e. determine F

and f.
3. Solve the Neumann problem (9).
4. Reformulate the simplified Ohm’s law with the expres-

sion of the electric potential to find the current density
in the material.

5. Evaluate the torque (14).

One critical point in this method is to solve the Neumann
problem (9). In fact there are only few cases where the
solution can be analytically determined. A sphere is one of
the few geometries for which a simple analytical solution
exists. We deal with this case in Section 3.3. Most of the time,
a finite-elements method must be used. It enables one to
solve this kind of problem for various body shapes. In
particular, we use such method to evaluate the torque
created by eddy current in a capsule in Section 3.4. As an
analytical solution for spherical bodies is available [4], the
finite-elements solver performance can be evaluated for the
induction problem in Section 3.3.

3.3. Induction problem applied to a sphere or a spherical shell

Consider the following coordinate system:

� ðex,ey,ezÞ a fixed coordinate system (f subscript), the
origin O is the geometric center of the object.
� ðei,ej,ekÞ a body coordinate system (b subscript), the

origin O is the geometric center of the object.

With these notation, consider a spherical conducting body
rotating along its Ozf axis (the ez axis and the ek axis
coincide). The rotation speed is o!¼o e

!
z and the mag-

netic field B
!

f ðM,tÞ ¼ Bðsin l e
!

xþcos l e
!

zÞ (Fig. 1). Define
ðjx,jy,jzÞ the components of j

!
f ðM,tÞ in Cartesian coordi-

nates. Neglect the self-induction phenomenon. This pro-
blem has already been solved in 1880 by Hertz [4] who
has provided an analytical formula reproduced in the
following which will be used to cross validate the finite
element solver we use (here FreeFEM [3]).

The torque (in the body reference frame) is

� for a sphere of radius R

T
!

b ¼�
2

15
pB2o

k sin2
ðlÞR5 e

!
k ð15Þ

� for a spherical shell of radius R and a thickness d

T
!

b ¼�
2

15
pB2o

k sin2
ðlÞðR5

�ðR�dÞ5Þ e
!

k

��
2

3
pB2o

k sin2
ðlÞdR4 e

!
k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

d5R

ð16Þ

Comparisons of the above described finite element
solver to those analytic formulas are reported in Table 2
for a spherical body of 1 m radius and the coefficient
ðB2o=kÞ sin2 l¼ 1 N m�4.

The difference between the two methods is negligible for
our application. The finite element method and its solver are
well suited to determine the torque created by eddy currents.

ω

λ

Fig. 1. Notations for a spherical body.
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3.4. Induction problem applied to a capsule

The capsule is a thin-wall cylindric body closed at the two
ends by thin-wall hemispheres. The length of the cylinder is L,
its radius R and its thickness d. The two hemispherical shells
have the same radius and thickness as the cylindrical part. To
determine the torque induced by eddy currents two cases
must be considered: the first case we study is the capsule
rotating along its longitudinal axis, the second is the same
capsule rotating along a transverse axis (flat spin) (Fig. 2).

Case1: capsule rotating along its longitudinal axis. We use
the same systems of coordinates as for the sphere. The Ozf

axis is the longitudinal axis of the capsule. The rotation speed

along this axis is o ð v!f ¼�oyf e
!

xþ oxf e
!

yÞ. The magnetic

field is B
!

f ðM,tÞ ¼ Bðsin l e
!

xþ cos l e
!

zÞ. We define ðjx,jy,jzÞ

the components of j
!

f ðM,tÞ in Cartesian coordinates. Again,

the self-induction phenomenon is neglected.
The methodology described in the previous sections is

used:

1. From the simplified Ohm’s law (8) for a rotating
capsule, one gets

kjx ¼�
@V

@xf
þoxf cos lB

kjy ¼�
@V

@yf

þoyf coslB

kjz ¼�
@V

@zf
�oxf sin lB

8>>>>>>>><
>>>>>>>>:

ð17Þ

2. The Neumann problem for a rotating capsule is

DV ¼ 2oB cos l

xf
@V

@xf
þy

@V

@yf

¼oðx2
f þy2

f ÞB cos l r¼ R and r¼ R�d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cylindrical part

xf
@V

@xf
þyf

@V

@yf

þ zf�
L

2

� �
@V

@zf

¼oðx2
f þy2

f ÞB cos l�o zf�
L

2

� �
xf B sin l r¼ R and r¼ R�d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

upper hemisphere

xf
@V

@xf
þyf

@V

@yf

þ zf þ
L

2

� �
@V

@zf

¼oðx2
f þy2

f ÞB cos l�o zf þ
L

2

� �
xf B sin l r¼ R and r¼ R�d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

lower hemisphere

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð18Þ
3. Accounting for the linearity of the Neumann problem

the solution potential is split in two parts: a potential
V1 depending on cos l and a potential V2 depending
on sin l. An analytical solution for V1 can be found
but not for V2 which is determined through the finite-
elements method. The potential is

V ¼o
ðx2

f þy2
f Þ

2
cos lBþV2

where V2 is the solution of the reduced Neumann-like
problem

DV2 ¼ 0

xf
@V2

@xf
þyf

@V2

@yf

¼ 0 r¼ R and r¼ R�d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cylindrical part

xf
@V2

@xf
þyf

@V2

@yf

þ zf�
L

2

� �
@V2

@zf

¼�o zf�
L

2

� �
xf B sin l r¼ R and r¼ R�d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

upper hemisphere

xf
@V2

@xf
þyf

@V2

@yf

þ zf þ
L

2

� �
@V2

@zf

¼�o zf þ
L

2

� �
xf B sin l r¼ R and r¼ R�d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

lower hemisphere

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð19Þ

The finite-elements solver gives a value of the torque
induced by eddy currents. By linearizing around a
reference shape one can find an approached expres-
sion of the torque in the body coordinate system.

4. The current density is evaluated with the finite
element solver.

5. An approached formula for the torque, reproducing
with good accuracy the numerical results obtained by
the finite element tool developed in this article is (in
the body coordinate system)

T
!

b ��
oB2

k sin2 l pdLR3
þ
p
3

dR4
� �

e
!

k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R � 1:3 m L ¼ 527 m d5R

ð20Þ

Practically, the approached formula is valid only
under the following assumptions: R� 1:3, L is between
7 m and 5 m and d5R.

Case 2: capsule rotating along its transverse axis. The
same capsule is considered here, but the rotation takes

Table 2
Comparison between analytical and finite-elements results for a sphe-

rical body (R¼1 m).

Thickness

(mm)

Analytical result

(mN m)

Finite element result

(mN m)

Relative

error (%)

5 10.37 10.32 0.4792

10 20.53 20.43 0.4888

20 40.22 40.06 0.4772

30 59.17 58.89 0.4870

Full 418.9 414.2 1.095

ω

λ

λ
ω

Fig. 2. Definition of the notations for a capsule rotating along its

longitudinal axis and along its transverse axis.
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place about the Oxf axis, at the angular velocity o
( v
!

b ¼�ozb e
!

jþoyb e
!

k). Once more, self-induction is
neglected. The following assumptions are used:

� The magnetic field is constant in the fixed coordinate
system and in the xy-plane.
� The capsule is rotating along the ex axis. The ex axis and

the ei axis coincide. The ek axis is the longitudinal axis
of the capsule.

The magnetic field is

B
!

f ðM,tÞ ¼ Bðcos l e
!

xþsin l e
!

yÞ

1. From the simplified Ohm’s law (8), expressed in
the body coordinate system, for a rotating capsule,
one gets

kji ¼�
@V

@xb
þozb sin l sinðotÞB�oyb sin l cosðotÞB

kjj ¼�
@V

@yb

þoyb cos lB

kjk ¼�
@V

@zb
þozb cos lB

8>>>>>>><
>>>>>>>:

ð21Þ

2. The Neumann problem is as follows:

DV ¼ 2oB cos l

xb
@V

@xb
þyb

@V

@yb

¼ozbxb sin l sinðotÞB

�oxbyb sin l cosðotÞBþoy2
b cos lB r¼ R and r¼ R�d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cylindrical part
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� �
cos lB r¼ R and r¼ R�d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

upper hemisphere

xb
@V

@xb
þyb

@V

@yb

þ zbþ
L

2

� �
@V

@zb

¼ozbxb sin l sinðotÞB�oxbyb sin l cosðotÞB

þoy2
b cos lBþozb zbþ

L

2

� �
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lower hemisphere

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð22Þ

3. Taking advantage of the linearity of Neumann pro-
blem, the potential is split into three parts: a time-
invariant potential V1, a potential V2 proportional to
cosðotÞ and a potential V3 proportional to sinðotÞ.
Analytic solutions for V1 and V2 are straightforward,
but V3 must be determined through the finite-ele-
ments method. The potential is

Vðxb,yb,zbÞ ¼
Boðz2

bþy2
bÞcos l

2
�

Bxbybo cosðotÞsin l
2

þV3

where V3 is the solution of the reduced Neumann

problem

DV3 ¼ 0
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cylindrical part
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upper hemisphere
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ð23Þ

As previously described, we can find a linearized
approached torque formula through the finite-ele-
ments solver.

4. The current density is evaluated with the finite
element solver.

5. The approached torque formula in the body coordi-
nate system is

T
!

b �
oB2

k
sin2 l

3

4
pdLR3

þ
5

6
pdR4

� �
e
!

k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R � 1:3 m L ¼ 527 m d5R

ð24Þ

The approached formula is valid only with the follow-
ing assumptions: R� 1:3, L is between 7 m and 5 m
and d5R.

4. Damping of spinning dynamics along orbits of interest

4.1. Description of interesting orbits and its environmental

conditions

We now study debris from Ariane 4 upper stages.
Those stages, called H10, were initially in Sun-synchro-
nous orbits with altitudes ranging from 500 to 800 km;
therefore the orbit inclination is approximately 97–981.
We use the IGRF 2005 (with the 2010 coefficients)
magnetic model to simulate the internal Earth magnetic
field without modeling the time variation (time variation
does not change the value of the magnetic field more than
0.1% in a year). This model gives us the direction and the
intensity of the magnetic field at each point along the
orbit. Fig. 3 shows orientation and absolute value of the
magnetic field vector along a typical trajectory computed
with the IGRF model.

The intensity of the magnetic field for a typical H10
orbit ranges from 0.1 G at equator up to 0.55 G at poles.
The air drag torque is neglected and it is assumed that
passivation is already accomplished, so one can ignore
fuel friction in tanks. The only torque besides the eddy
current torque is the gravity gradient torque.
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4.2. Axial spin case

The attitude dynamic of a debris subject to gravity
gradient and eddy current torques is now simulated. It is
assumed that the longitudinal axis of the debris coincides
with its linear velocity vector. The debris is rotating along
this axis with an angular velocity o0. These two assump-
tions represent initial attitude conditions for the debris.
The attitude dynamic equation reads

_o!¼ I
�1
ð T
!
�o!� I o!Þ ð25Þ

where T
!
¼ T
!

ggþ T
!

ec , T
!

gg represents the gravity gradi-
ent torque and T

!
ec the eddy current torque. In the body

coordinate system, this torque is equal to

T
!

ec ¼

�
1

k pdLR3
þ
p
3

dR4
� �

oiðB
2
j þB2

k Þ

�
1

k
3

4
pdLR3

þ
5

6
pdR4

� �
ojðB

2
i þB2

k Þ

�
1

k
3

4
pdLR3

þ
5

6
pdR4

� �
okðB

2
i þB2

j Þ

0
BBBBBBB@

1
CCCCCCCA

b

ð26Þ

where ðBi,Bj,BkÞ are the components of the Earth magnetic

field in the body system of coordinates and ðoi,oj,okÞ the
components of o! in the same system of coordinates.

Fig. 4 shows the results for the debris of the Ariane flight
35 and o0 ¼ 521=s (this is approximately the speed rotation
measured for this H10 stage). The inertia tensor used for this
simulation is taken from Ariane 4 datasheet [5]. The rotation
speed exponentially decreases as has been observed for
other space bodies. This simulation illustrates the phenom-
enon of eddy current rotation damping. Table 3 contains the
results of other simulations. All simulations show identical
exponentially decreasing trends. The evaluated decay time
concerning an H10 stage ranges from 19 to 25 days.

4.3. Flat spin case

The axial spin case is of particular interest as it
corresponds to the initial rotation configuration. Due to
multiple factors, e.g. fuel friction in tanks, the initial axial
spin configuration is unstable and may rapidly change to

Fig. 3. Stages trajectory, orientation and intensity of the magnetic field encountered.
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Fig. 4. Attitude simulation for the flight V35 H10 stage (axial spin as

initial condition).

Table 3
Axial spin simulation results.

Flight Za (km) Zp (km) x0 ð1=sÞ Damping time
cst.(days)

V35 779 764 52 25

V44 764 760 60 25

V52 798 782 38 22

V72 774 766 39 25

V75 625 594 60 19

V107 789 783 37.5 22

V124 623 610 42 23

Table 4
Flat spin simulation results.

Flight x0 ð1=sÞ Damping time
cst. (days)

V52 20 190

V107 20 225
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a flat spin configuration [18]. To evaluate the time of
decay, the same torque equation (26) is used. The rotation
also exponentially decreases but the time of decay is
much longer than the axial spin configuration as pointed
out in Table 4.

4.4. Damping time constant

Whatever the rotation configuration under considera-
tion, an eddy current torque is induced in a conducting body
rotating in a homogeneous magnetic field. The simulation of
the attitude dynamic equation for an aluminum H10 stage
in LEO shows the expected exponential decrease on the
angular rate. The time of decay is strongly related to the
rotation configuration but is, in all cases, below 250 days. At
the light of these simulations and the few observations that
have been reported in the literature (e.g. [17] or [1]), one
can expect to find conducting debris with very low angular
rates after having spent a few years in near-Earth space.

5. Observation of debris motion

A natural next step in the study of the residual motion
of old debris in orbit is direct observation. To validate the
results presented above and to verify that one can expect
the targets for Active Debris Removal to be relatively
steady, therefore easily catchable, these observations are
needed. Such observations can be done in situ, with
orbital assets approaching the target and being observed
with optical or radar means, or can be operated from the
ground, again with optical or radar means.

Currently, there exists no orbital system capable of moni-
toring the movement of satellites (or at least such results
have not been published, up to our knowledge). Therefore,
the only remaining possibility is ground observations.

5.1. Radar observation

Numerous radars are suitable for the observation of
the debris. One of the most efficient is the TIRA (Tracking
& Imaging Radar) from FGAN (Forschungsgesellschaft für
Angewandte Naturwissenschaften), in Germany; it is
capable of providing kinematics of large objects with a
precision in the range of 0.11/s in all directions, as was
mentioned for instance by Kawamoto et al. [8].

The French ship ‘‘Le Monge’’ could make several
observations of a selected batch of old Ariane upper
stages. The requirements are to have two observation
periods per object lasting more than 5 min with an
accuracy better than 1 s, with different sight angles to
guarantee a good 3D resolution.

These series of observations have effectively been
performed at the end of May 2011, considering two upper
stages, corresponding to the Ariane flights V75 and V107
shown in Table 3. These upper stages had initial rotation
velocities of respectively 601/s and 37.51/s. The observa-
tions will be studied subsequently. T
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5.2. Amateur observations

Several networks of amateur astronomers publish their
observations on the Internet. A typical and very rich example
is given in [6]. The provided information details the observa-
tion conditions, dates, azimuths, magnitude and magnitude
variation. They also provide a qualitative information relative
to the movement of the object. For example, the Ariane upper
stage of flight V75 has been reported four times, with
normalized magnitudes between 4 and 5, and a movement
quoted as ‘‘Steady’’ or ‘‘Almost Steady’’. Table 5 gives a
synthetic view of the behavior of Ariane upper stages present
in low Earth orbit, according to [6]. It describes, from left to
right, the name of the debris and its launch date, the orbital
parameters (apogee height, perigee height, inclination), the
number of reported observations, the magnitude and its
variability, the date of last observation, and general com-
ments on the movement of the debris. From this table, one
can see that the vast majority of the debris are noted as
‘‘Steady’’ or ‘‘Almost Steady’’. Unfortunately, these qualitative
observations are not really quantified. Further, most of the
observations are relatively old, most of them having been
performed shortly after the launch.

Nevertheless, it seems obvious that they corroborate
the model of ‘‘magnetic damping’’ of the rotational move-
ment of the debris discussed in this paper.

6. Conclusion

The number of pieces of space debris has emerged as a
serious threat to the future of space programs. Numerous
solutions to limit the number of debris in low Earth orbit are
under study but one of the major problems in the develop-
ment of such solutions concerns the angular rate of the
debris. In this paper, we have introduced a general model of
the induction phenomenon yielding an exponential damping
of the spin motion for a conducting piece of space debris the
Earth magnetic field. A calculation method for this damping
has been applied to an aluminum H10-stage-like shape. The
evaluated eddy-current braking torque has been used in an
attitude simulator in a low Earth orbit to evaluate the
damping time constant of a typical H10 stage which is
evaluated to be lower than 250 days.

The previous papers on the subject [1,4,14,15,17], the
few observations and the results of this analysis all
indicate a natural angular rate damping of a conducting
debris in low Earth orbit. The damping time constant is
strongly related to the debris shape, material and rotation
properties but the results of this analysis strongly sug-
gests that one can expect debris to have only low angular
rates after few years in space.
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