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We present experimental results on formation flight within a confined space for a swarm of
micro UAVs. The user selects a target for the swarm to reach, while maintaining a specified
formation shape. This high-level requirement is addressed by a classical centralized control
algorithm combining potential attractive, repulsive and gyroscopic forces to respectively main-
tain the formation and avoid collisions between UAVs and obstacles. To enable swift and fluid
maneuvers in the confined environment, we propose an Integer Linear Programming methodol-
ogy for real-time optimization of the formation’s rearrangement. The control algorithms have
been implemented and tested on a group of Crazyflies, which fly in an arrow-like formation
occupying about 20% of the available area.

I. Nomenclature

𝑁 = Number of drones in the swarm
𝛼 = Desired orientation angle of the formation
𝑑 = Minimal distance between two point on the formation
q𝑖 = Position of the 𝑖𝑡ℎ drone
q 𝑓

𝑗
= 𝑗 𝑡ℎ position in the formation

q𝑔𝑜𝑎𝑙 = Position of the objective
q𝑜𝑏𝑠
𝑗

= Position of the 𝑗 𝑡ℎ obstacle
u𝑑 = Desired group velocity for the swarm
u𝑖 = Commanded velocity for the 𝑖𝑡ℎ drone

II. Introduction
The subject of coordinated flight for a swarm of unmanned aerial vehicles (UAVs or drones) has garnered significant

interest in the last decades, both for civil applications such as search and rescue, mobile sensor grids, and large-scale
transportation, as well as for military purposes including surveillance, reconnaissance, and combat missions, see e.g.
[1–4] for recent surveys. A primary challenge in coordinating a swarm of micro UAVs is ensuring that, while moving
toward a user-defined target, the fleet maintains a specified formation shape and avoids collisions with environmental
obstacles and between each other. This problem becomes all the more challenging when a confined working space is
considered, leaving little room for movement and thus requiring accurate formation control.

The literature on the associated control problems is rich. For formation keeping tasks, various control schemes have
been proposed, see e. g. [5, 6] and references therein. In Virtual structure based methods[7, 8], one defines a rigid
structure formation that includes the drones and which is moved around, thus defining at the same time the trajectory
that each drone needs to follow. In Behavior based methods [9], the control strategies changes according to the situation
at hand and the tasks to be performed, e. g. tracking a target, avoiding an obstacle or reaching a given zone. In Artificial
potential field approaches [8, 10–12], a potential field is defined that drives the UAVs towards attraction zones while
creating repulsion between them to avoid collisions. In Consensus-based strategies [13–16] the states of all agents
converge towards a common goal. In terms of formation control, the consensus is usually limited to the velocity of
the agents. The swarm model is usually inspired from the pioneering work of Reynolds for representing flocks [17].
For convergence to target and obstacle avoidance, many techniques have also been developed. Collision Cone based
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approaches [18–21] consider a collision cone defined for each obstacle, which represents a zone in which a collision
with an obstacle is bound to happen if the velocity vector of the agent is in this zone. Once all collision cones are defined
for the agent, the method consist in finding a velocity vector that is closest to its "preferred" velocity vector (for instance
the one that brings him the closest to its objective) and remain outside of all the collision cone. Model Predictive
Control (MPC), see e.g. [22–24] and references therein, considers direct transcription of the mission goals under the
form of an optimal control problem where obstacles and possible collisions are introduced as constraints. Among many
possibilities, polyhedral separations allow to employ convex optimization methods. MPC is a versatile technique that
can also be used for formation keeping, the other drones acting as moving obstacles. Leaving the question of optimality
of trajectories that are carefully treated by MPC, Artificial potential fields and gyroscopic forces is a more basic method
that can be used to guide the drones away from the obstacles, see [11, 25–27] and reference therein.

In this paper, we consider a particular scenario of a medium-sized swarm of UAVs flying in a confined environment,
tasked with reaching a user-defined target while keeping a specified formation shape (here an arrow) and avoiding
obstacles, and collisions between each other along the way. Our desire is to develop an easy to implement method,
scalable when the number of drones is increased (in future applications, up to 50). So to minimize the computational
footprint, we do not rely on a MPC method and instead chose a twofold strategy. Firstly, inspired by the works of [8] and
[11], we employ artificial potential fields and gyroscopic forces for formation keeping, convergence to target, collision
and obstacle avoidance. Then, this solution is complemented by the main contribution of this paper, which is a proposed
real-time optimization strategy for formation reconfiguration. Using Integer Linear Programming (ILP), we re-allocate
at each control loop iteration the positions within the formation for all the UAVs. This proves particularly valuable when
sudden changes of the target are required by the user. This re-allocation is illustrated in Fig. 1 for a case where the
formation has to make a U-turn. Instead of having the whole formation turn around, a reordering within the formation
allows to reorient the arrow in a swift and fluid manner.

Fig. 1 Keeping or re allocating positions on the formation in the case of a 180° turn has an impact on the overall
manoeuvre. To reorient the arrow-shaped formation, it is advantageous to consider the re allocation of the
formation

The paper is organized as follows. In Section III, we present a mathematical formulation of the formation
reconfiguration problem and solution. We also present the velocity control approach implementing artificial potential
fields and gyroscopic forces. In Section III.E, we present the resulting control algorithm. Then in Section IV, we
reports test results obtained on the Institut Saint-Louis (ISL) swarm test-bed. Details on the UAVs, sensing systems,
implementation and tuning are provided. Section V sketches conclusions and perspectives.
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III. Methodology
We will describe here the methods used for controlling each drone of the swarm in a way to complete the given

objective, that is reaching a goal while avoiding obstacles and staying in a specified formation shape.

A. Problem definition
We consider a homogeneous swarm of UAVs, and we note q𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]𝑇 ∈ R3 the position vector of each drone 𝑖

with respect to a global reference frame. We also suppose that the number of drones in the swarm can change overtime,
and we note N(t) the current number of active drone in the swarm at time 𝑡. To define the formation shape, we use
a formation function that, given a parameter vector 𝜂, provides a list of positions that the drones should occupy to
create the desired formation shape. We chose to take a 2D arrow-like shape on the [x,y] plane for our formation, which
allows us to define an orientation angle 𝛼 as the angle of the direction the arrow is pointing toward, and we also note
𝑑 the minimal distance between two positions on the formation (see Fig. 2) The angle 𝛼 could be chosen freely, but

Fig. 2 Formation shape for 𝑁 =7, with 𝛼 = 𝜋
4

will usually be chosen as the angle of the direction between the barycenter of the swarm’s position and the target’s
position projected on the horizontal [x,y] plane. That way the arrow-like shape will always be pointing towards the
current objective.

𝛼 = 𝑎𝑛𝑔𝑙𝑒( [q𝑔𝑜𝑎𝑙 −
1
𝑁

𝑁∑︁
𝑖=1

q𝑖] [𝑥,𝑦 ] , e𝑥) (1)

with q𝑔𝑜𝑎𝑙 the position of the objective, [(𝑣)] [𝑥,𝑦 ] the projection of the vector v on the [x,y] plane, e𝑥 the unit vector
along the 𝑥 axis, and 𝑎𝑛𝑔𝑙𝑒(v,w) the function that gives the oriented angle between two 2D vectors v and w.
Thus, considering the parameter vector 𝜂(𝑡) = (𝑁 (𝑡), 𝛼(𝑡), 𝑑), we define the formation function as

𝐹 : R3 → R3×𝑁

𝜂(𝑡) ↦→ 𝐹 (𝜂(𝑡)) = (q 𝑓

1
𝑇
, ..., q 𝑓

𝑁

𝑇
)𝑇

(2)

with q 𝑓

𝑖
= [𝑥 𝑓

𝑖
, 𝑦

𝑓

𝑖
, 𝑧

𝑓

𝑖
]𝑇 ∈ R3 the 𝑖𝑡ℎ position on the formation. The value of 𝐹 are centered with respect to the origin

of the reference frame.
To better visualize, Fig. 3 shows how the formation looks like depending on the number of drones. With this, our goal in
formation control is to reach the following equality

𝑅𝑒𝑙 (π(𝑋 (𝑡))) = 𝑅𝑒𝑙 (𝐹 (𝑁 (𝑡), 𝛼(𝑡), 𝑑))
with X(𝑡) = (q1, ..., q𝑁 )𝑇 the state of the drones at time t, π(X) a permutation function, and 𝑅𝑒𝑙 (X) the relative position
function, defined by

𝑅𝑒𝑙 : (R3)𝑁 → (R3)𝑁×𝑁

(q1, ..., q𝑁 ) ↦→ (q𝑖 − q 𝑗 )1≤𝑖, 𝑗≤𝑁

The permutation function π(𝑋) allows for way to allocate each drone to a position on the formation. This is especially
important in the case of a sudden change in the formation, or in the case of a loss of a drone. The method to find this
permutation function is described in the next section.
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Fig. 3 Formation shapes for 𝑁 ranging from 5 to 16, with 𝛼 = 𝜋
2

B. Reconfiguration
Since we consider a homogeneous swarm, it is possible to allocate a drone one position or another without issue.

Because of this, we are free to find a position allocation that can minimize the total movement in the swarm, i.e.
minimize the total distance between the current drone position and their respective allocated position on the formation.
This could be useful when for instance the arrow-like shape needs to rotate by 180° . Not using position re-allocation
would lead to the drone at the front having to cross the whole formation to reach its position, thus generating more
possible collision. But with optimized position allocation, it could take a position at the back of the arrow and not move
too much. To this end we have cast this position allocation problem as an optimisation problem.

An optimisation algorithm that finds the previously mentioned permutation function π(𝑋) that re allocate positions
on the formation in an optimal manner in order to minimize the total movement in the swarm in case of change in the
formation was thus implemented.

To do this, we will use Integer Linear Programming (ILP) optimisation that finds position allocation to minimize
total distance between current position of the drones and its assigned position on the formation.

Let q𝑖 be the position of the drone number i, and q 𝑓

𝑗
the position number j on the formation centered around the

origin of the global frame. We are looking for the permutation function π(.) over the set {1, ..., 𝑁} that minimizes the
cost defined by

𝐽 =

𝑁∑︁
𝑖=1

∥q𝑖 − (q 𝑓

π (𝑖) + B(q))∥2

with B(q) = 1
𝑁

∑𝑁
𝑖=1 q𝑖 the barycenter of the current position of the drones.

We introduce the cost matrix M ∈ R𝑁×𝑁 such that M𝑖 𝑗 = ∥q𝑖 − q 𝑓

𝑗
∥2, and the choice variable 𝑣𝑖 𝑗 which is equal

to 1 if the drone 𝑖 is allocated to position 𝑗 on the formation, 0 otherwise. The optimisation problem then becomes:

min
(𝑣𝑖 𝑗 )𝑖, 𝑗

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

M𝑖 𝑗𝑣𝑖 𝑗

s.t.
𝑁∑︁
𝑗=1
𝑣𝑖 𝑗 = 1,∀𝑖 ∈ {1, ..., 𝑁}

𝑁∑︁
𝑖=1

𝑣𝑖 𝑗 = 1,∀ 𝑗 ∈ {1, ..., 𝑁}

𝑣𝑖 𝑗 = 0 or 1,∀(𝑖, 𝑗) ∈ {1, ..., 𝑁}2

(3)

Due to the nature of the problem, the optimisation has at least one solution, but there is no guarantee that it can
be unique. For instance Fig. 4 shows a situation where the two presented allocations have the same minimal cost. To
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prevent any issue of oscillation between two or more possible solutions, the optimisation search is warm-started at the
previously found solution. Once we have the optimal V = (𝑣𝑖 𝑗 )𝑖 𝑗 from the resolution of Eq. (3), the corresponding

Fig. 4 Two possible position allocation with the same total cost

permutation function is simply π(X) = 𝑉.X.

C. Formation control
The method is taken from [8], and uses a potential function to keep the swarm in the wanted formation while

avoiding collisions between the drones. The chosen model is

¤q𝑖 = u𝑖 ∀𝑖 ∈ (1, ..., 𝑁) (4)

with u𝑖 being the commanded velocity vector. The relative vector between the positions 𝑖 and 𝑗 on the formation is
noted l𝑖 𝑗 = q 𝑓

𝑖
− q 𝑓

𝑗

Each drone has to align its velocity vector with the global swarm vector u𝑑 which is defined using an attractive force
between the position of the goal q𝑔𝑜𝑎𝑙 and the barycenter of the swarm, with 𝑘𝑎 a positive weight.

u𝑑 = 𝑘𝑎 (q𝑔𝑜𝑎𝑙 − 1
𝑁

𝑁∑︁
𝑖=1

q𝑖)

Then, following the method described in [8], we consider the following potential function

𝜙𝑖 = 𝛾𝑖 + 𝛿𝛽𝑖

with 𝛿 a constant positive tuning function, and 𝛾𝑖 and 𝛽𝑖 defined as follows, with 𝑁𝑖 the drones in the neighborhood of
the drone 𝑖 and 𝑘 a positive constant:

𝛾𝑖 =
∑︁
𝑗∈𝑁𝑖

𝛾𝑖 𝑗 , 𝛾𝑖 𝑗 =
1
2
∥q𝑖 − q 𝑗 − l𝑖 𝑗 ∥2

𝛽𝑖 =
∑︁
𝑗∈𝑁𝑖

(
𝛽𝑘
𝑖 𝑗

𝛽2𝑘
𝑖 𝑗𝑙

+ 1
𝛽𝑘
𝑖 𝑗𝑙

), 𝛽𝑖 𝑗 =
1
2
∥q𝑖 − q 𝑗 ∥2, 𝛽𝑖 𝑗𝑙 =

1
2
∥l𝑖 𝑗 ∥2

These two part each correspond to a part of the objective : 𝛾𝑖 is for making the drone reach the wanted formation shape,
while 𝛽𝑖 is for avoiding collision between the drones. The potential function is differentiated along the solutions of
Eq. (4):

¤𝜙𝑖 =
∑︁
𝑗∈𝑁𝑖

𝛀𝑇
𝑖 𝑗 (u𝑖 − u𝑑) −

∑︁
𝑗∈𝑁𝑖

𝛀𝑇
𝑖 𝑗 (u 𝑗 − u𝑑)
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with
Ω𝑖 𝑗 = q𝑖 − q 𝑗 − l𝑖 𝑗 + 𝛿𝑘 (

1
𝛽2𝑘
𝑖 𝑗𝑙

− 𝛽2𝑘
𝑖 𝑗 )𝛽𝑘−1

𝑖 𝑗 (q𝑖 − q 𝑗 )

The command u𝑖 is then chosen as
u𝑖 = u𝑑 − C

∑︁
𝑗∈𝑁𝑖

Ω𝑖 𝑗 (5)

where C ∈ R𝑁×𝑁 is a symmetric positive definite matrix.
This control command allows us to keep the desired formation while avoiding collisions between drones. The proof for
this result can be found in [8].

D. Obstacle avoidance
The above sections have discussed the control of a swarm of 𝑁 UAVs towards a goal while keeping a desired

formation and re-allocating positions on this formation to minimize the total movement required. In this section, we
will add a way to avoid obstacles. To do this, repulsive and rotational forces are applied to each individual drone. For
simplicity sake, the position and dimensions of all obstacles are assumed to be known.

1. Repulsive Force
First for the repulsive force, we use the classic repulsive potential field form [11]

𝑈𝑟𝑒𝑝 =

{
1
2 (

1
𝑑 (q,q𝑜𝑏𝑠 ) −

1
𝑑0
)2 if 𝑑 (q, q𝑜𝑏𝑠) ≤ 𝑑0

0 if 𝑑 (q, q𝑜𝑏𝑠) > 𝑑0

with 𝑑 (q, q𝑜𝑏𝑠) is the shortest distance between the current position of the drone q and the obstacle, and 𝑑0 is the radius
of influence of the obstacle (another tuning parameter). The potential is the sum of the potential for each obstacle, and it
gives the following form for the repulsive force on drone 𝑖.

F𝑟𝑒𝑝

𝑖
= 𝑘𝑟

∑︁
𝑗∈𝑁𝑜𝑏𝑠

𝑖

( 1
𝑑 (q𝑖 , q𝑜𝑏𝑠

𝑗
)
− 1
𝑑0

) 1
𝑑2 (q𝑖 , q𝑜𝑏𝑠

𝑗
)
nOD 𝑗

𝑖

with 𝑁𝑜𝑏𝑠
𝑖

the indices of the obstacles that are at a distance lower than 𝑑0 to the drone 𝑖, nOD 𝑗

𝑖
the unit vector going

from the closest point of the obstacle 𝑗 to the drone 𝑖, and 𝑘𝑟 a constant positive weight.

2. Rotational force
Inspired by [11, 25], we add rotational forces to guide the drone around the obstacle, their form is (the forces are not

derived from a potential field)

F𝑟𝑜𝑡
𝑖 = 𝑘𝑔

∑︁
𝑗∈𝑁𝑜𝑏𝑠

𝑖


0 −𝜔 0
𝜔 0 0
0 0 0

 nOD 𝑗

𝑖

with 𝑘𝑔 a constant positive weight, and 𝜔 calculated as

𝜔 =


𝜋𝑉𝑚𝑎𝑥

𝑑 (q,q𝑜𝑏𝑠 ) if 𝑑𝑒𝑡 [𝑑 (q, q𝑜𝑏𝑠), q𝑔𝑜𝑎𝑙 − q] ≥ 0 and 𝑑 (q, q𝑜𝑏𝑠) < 𝑑0
−𝜋𝑉𝑚𝑎𝑥

𝑑 (q,q𝑜𝑏𝑠 ) if 𝑑𝑒𝑡 [𝑑 (q, q𝑜𝑏𝑠), q𝑔𝑜𝑎𝑙 − q] < 0 and 𝑑 (q, q𝑜𝑏𝑠) < 𝑑0

0 if 𝑑 (q, q𝑜𝑏𝑠) ≥ 𝑑0

(6)

In Eq. (6), 𝑉𝑚𝑎𝑥 is approx. the maximum allowable velocity for the drones, the condition on the sign of
𝑑𝑒𝑡 [𝑑 (q, q𝑜𝑏𝑠), q𝑔𝑜𝑎𝑙 − q] is to make the rotational force go towards the goal. The slight disymetry between
the two conditions ≥ 0 and < 0 in Eq. (6) is here to avoid the method from generating a singular stop point at the surface
of the obstacle.

Combining the repulsive and rotational forces with the expression of the command vector from Eq.(5) yields a
command vector to allow us to keep the desired formation and avoid obstacles at the same time.

u𝑖 = u𝑑 − 𝐶
∑︁
𝑗∈𝑁𝑖

Ω𝑖 𝑗 + F𝑟𝑒𝑝

𝑖
+ F𝑟𝑜𝑡

𝑖 (7)
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E. Summary
In summary, our method requires a choice of 9 tuning parameters in total : 𝑘𝑎,𝑘 ,𝛿,𝐶,𝑘𝑟 ,𝑘𝑔,𝑑0,𝑉𝑚𝑎𝑥 ,𝑑, where 𝑑 is

the parameter of the formation that represent the minimal distance between two positions. The value of these parameters
were chosen after the tests presented in Section IV.C. Finally, the method could be summarized as the following loop,
assuming the positions and properties of the obstacles are known at all times:

Algorithm 1 (Main control loop)
- Read user-defined goal position
- Get position of the drones from the sensors
- Compute the formation angle 𝛼 with Eq. (1), and compute the corresponding formation positions with 𝐹 from
Eq. (2)
- Solve the optimisation problem of Eq. (3), and re-allocate drones to corresponding positions on the formation
- Compute and apply 𝑢𝑖 , the set point for the velocity of each drone in the formation, given by Eq. (7)

For safety purposes, the velocity set point 𝑢𝑖 is saturated to the maximum allowed velocity 𝑉𝑚𝑎𝑥

IV. Results
The control method described in the previous section was implemented on a small swarm of micro UAVs called

CrazyFlie, and different scenarios were run in an indoor confined environment to test the performances of the algorithms.

A. The CrazyFlie UAV
The CrazyFlie is a "small and versatile quad-copter for education and research"∗ developed by Bitcraze that allows

quick and easy testing of guidance, navigation and control algorithm on a real life system. It is a modular platform
with a wide ecosystem of add-on boards adding further functionality to the core drone, such as external positioning,
onboard image processing, or RGB LEDs for drone shows. For this study, we used an indoor positioning system based
on a Lighthouse Deck installed on the drones, and a network of Steam VR base stations located around the flight space.
These base stations scan the flight area with distinct time-encoded infrared signals, allowing the drone to compute
onboard a precise (error<1 cm) location solution without external communications.

Fig. 5 One CrazyFlie used during the experiments

∗See at https://www.bitcraze.io/products/crazyflie-2-1/
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A simulation environment was developed in order to allow fast iterations on the algorithm development. For this, a
representative dynamic model of the closed-loop behavior of the CrazyFlie platform is needed. To get this, the dynamic
response to a velocity step command sent to a single CrazyFlie was recorded, and a 2nd order model with delay (see
Eq. (8)) was fitted to this response. The data and fitted model can be seen on Fig. 6

Fig. 6 Experimental data and fitted second order model, for a series of step command in velocity along the
lateral body frame (y-axis)

The chosen second-order dynamic model of a single CrazyFlie is:

𝜏2
𝑠

𝑑2𝑉𝑖

𝑑𝑡2
+ 2𝜉𝜏𝑠

𝑑𝑉𝑖

𝑑𝑡
+𝑉𝑖 = 𝐾𝑝𝑢(𝑡 − 𝜃𝑝) (8)

with 𝑉𝑖 the velocity along one of the axis (x,y or z), 𝑢 the velocity command, and (𝐾𝑝 , 𝜏𝑠 , 𝜉, 𝜃𝑝) the fitted parameters.
The best fitting parameters for the experimental data we collected were found to be 𝐾𝑝 = 1.07, 𝜏𝑠 = 0.17 s , 𝜉 = 0.64
and 𝜃𝑝 =0.04 s. The CrazyFlie API allows sending position and/or velocity set points to the drones. We send the
velocity set point Eq. (7).

B. Parameter values
The swarming algorithms presented in Section III are parameterized through several tuning gains and parameters.

The selection of these parameters was done iteratively using the simulation model, then refined using the real-world
swarming setup. The parameters used for the reported experiments are summarized in Table 1.

𝑘𝑎 (-) 𝑘 (-) 𝛿 (-) 𝑐 (-) 𝑘𝑟 (-) 𝑘𝑔 (-) 𝑑0 (m) 𝑉𝑚𝑎𝑥 (m/s) 𝑑 (m)

0.2 1 0.002 0.2 0.02 0.1 1 0.5 0.6
Table 1 Values of tuning parameters

The parameter 𝑐 corresponds to the matrix C in Eq. (7) with the expression C = 𝑐I, with I the identity matrix. Moreover,
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the values of these parameters, especially for 𝑑0, 𝑉𝑚𝑎𝑥 and 𝑑 depend on the size of the considered environment. These
values were taken for a 6𝑚 × 5𝑚 × 2𝑚 working space, but a larger working space could benefit from taking different
values.

C. Test results
In the presented scenario, we consider a swarm of 7 CrazyFlies in an indoor confined environment initially at rest in

one corner of the room, and 3 static targets positioned in each of the remaining corners of the room. In this experiment,
one goal is "activated" (meaning the swarm is tasked with reaching this goal), and once the swarm has reached it,
another goal (randomly chosen) is activated, and this procedure continues until the swarm receives a signal to land. A
large sphere lies in the middle of the room and serves as an obstacle that the drones have to avoid.

Fig. 7 Beginning of the experiment: the arrow-shaped formation passes an obstacle and reaches the user-defined
target

Fig. 7 shows the beginning of the experiment. After a takeoff, the drones go to the first activated goal while traversing
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the obstacle in the middle (5 of the drones goes on the left, and 2 on the right of the obstacle). The left side of the figure
are the images taken from a camera, and the right side are plots obtained from logs. We can see that the drones manage
to avoid the obstacle by turning around it, and reach the target in the desired arrow-shaped formation.

Fig. 8 Reconfiguration of the formation in response to a sudden change of target

Fig. 8 reports the next phase of the experiment, with a sudden target change. In response to this change, Algorithm 1
decides to operate a change in the formation. One can see the reallocation being done, e.g. with one of the side drones
becoming the tip of the arrow.

Finally, Figs. 9 to 11 provide some metrics to evaluate the performances of the method. One of the first thing to
note is that both the distance between the drones and the distance with the obstacle remain at all times higher than
0.2 m, which considering the size of a Crazyflie (a bit less of 10cm from one end to the other) and the accuracy of
our positioning system (<1cm), indicates that no collision ever happened during the experiment. Another thing worth
noting is that during obstacle avoidance, the distance between drones is also affected, and drones go closer to each other.
This can be explained by the fact that the formation for the drones is not completely rigid, and allows a more fluid-like
behavior of the swarm, a natural effect of the trade-off between repulsive and attractive potential in Eq. (7). The relative
rigidity is mainly affected by the two parameters 𝛿 and 𝑐 that are used as weights on the local potential function that
aims at keeping the formation. This fluid-like behavior can also be witnessed in Fig. 9 where some bumps in the average
distance to the formations positions are seen during the phases when the swarm is avoiding the obstacle. Moreover,
we can clearly see the two moments in the experiments when the target was changed, creating a sudden change in the
formation, leading to spikes in formation position error. Interestingly, after the first target change, the obstacle was not in
the way to the new objective, so the time to reach back the new formation shape is really short, whereas after the second
change of target an obstacle was indeed in the way, thus causing an increase of the time needed to reach the equilibrium.
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Fig. 9 Average distance to formation position at each time step

Fig. 10 Minimal distance between drones at each time step

Fig. 11 Minimal distance with the obstacle at each time step
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V. Conclusion
In this paper, experimental results were presented for a proposed centralized formation control and obstacle avoidance

method able to deal with a medium-sized swarm of micro UAVs flying in a confined environment. The tests were run
indoor, using a centralized computer performing the algorithmic calculations, communications and synchronisation
between the UAVs. In view of applications, a few leads on what could be done next are as follows.

• Handle addition or removal of one or several UAVs in the swarm. Preliminary simulations and experiments show
that this can be easily done. Indeed, Algorithm 1 can be readily extended to handle a varying number 𝑁 of UAVs,
as the mathematical formulation of the ILP shows it in Section III.B.

• Increase the size of the swarm. The test results we presented were done with a swarm of 7 drones, but a swarm
with a higher count of UAVs could be considered. However, we did some test with more drones, and one of the
problems was the increase in communication delay, as well as increased oscillations in the swarm because of the
confinement (wall-effect). In Section V, an image with a swarm of 20 CrazyFlie can be found, and it is clear that
with this amount of drones covering approx. 60% of the room area, maneuverability is quite a challenge.

• Try a more decentralized/distributed approach. The centralized nature of our approach can be seen as a weakness,
especially in view of applications in scenarios of communication partial or full outage. The main part of our
algorithm that needs a centralized approach is the part on position allocation, as the rest of the method on formation
control and obstacle avoidance can be easily changed in the case of a distributed approach. We decided to solve a
global ILP problem, but this could maybe done differently with a more decentralized or distributed approach.

Appendix : An extended swarm

Fig. 12 20 CrazyFlies occupying the majority of the available area. A mobile target is considered.
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Appendix : End of the experiment

Fig. 13 The final sequence of the experiment
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