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Figure 1: Conversion efficiency de-
pending on a catalyst average tem-
perature. [Heywood, 1998].

Automotive Gasoline engines are equipped with a Three-Way Catalyst
(TWC) located in the exhaust line. This after-treatment device aims at reducing
the three major pollutants contained in the gas flowing through it and resulting
from the combustion (hydrocarbons HC, carbon monoxide CO and nitrogen ox-
ide NOx). Yet, conversion efficiency highly depends on the catalyst temperature,
as presented in Figure 1. Right after a cold start of the engine, temperatures are
too low to activate chemical reactions and the catalyst conversion ratio is poor.
Therefore, speed-up of the catalyst warm-up is a point of critical importance to
reach high level of pollutant conversion.

We consider here the problem of controlling this warm-up. Various strategies
can be performed.

One of them consists in adding an electrical resistance to the catalyst to pro-
vide an additive energy supply (see Figure 2). This strategy considerably short-
ens the duration of the warm-up phase but represents an additional cost and is
only chosen by a few automotive companies (Alpina, BMW [not the best exam-
ple lately...]).

Another standard strategy consists in degrading temporarily the efficiency of the combustion propelling the vehicle,
in order to increase the temperature of the exhaust gas flowing through the catalyst.

We want to study here how to operate such strategies, namely, how to choose the resistance characteristics and its
operating point or the inlet gas temperature, depending on the considered warm-up solution.
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Figure 2: Left: Transversal view of a standard catalyst, composed of two monoliths. Right: Schematic view of a
catalyst equipped with a warm-up resistance (represented here externally for the sake of simplicity) and view of the
main thermal exchanges.
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In the sequel, the questions followed by a ∗ require the use of Matlab/Simulink.

1 Modeling

Assume that:

• the catalyst is cold (no chemical reaction occurs inside it and no enthalpy is released);

• radial and angular dependencies can be neglected;

• the mass flow rate of the gas does not vary along the catalyst and is constant over time.

Then, denoting ξ the longitudinal position and τ the current time, the dynamics of the monolith/gas temperatures can
be described by the following equations

∂Tw

∂τ
(ξ ,τ) =αw

∂ 2Tw

∂ξ 2 (ξ ,τ)+βw(Tg(ξ ,τ)−Tw(ξ ,τ))+ γwQR(ξ ,τ)

∂Tg

∂τ
(ξ ,τ) =−αg

∂Tg

∂x
(ξ ,τ)+βg(Tw(ξ ,τ)−Tg(ξ ,τ))

∂Tw

∂ξ
(0, t) =

∂Tw

∂ξ
(L, t) = 0

Tg(0,τ) =Tin(τ)

(1)

in which:

• Tw is the distributed temperature of the monolith;

• Tg the one of the gas flowing into it;

• QR is the heat released by the external resistance (if present);

• ṁ is the gas mass flow rate; and

• αw,αg,βw,βg and γw are positive variables that are considered constant here.

1. Explain the physical meaning of this model, including its boundary conditions.

2.* Compare this model with the one implemented in your Simulink model. Explain the discretization methodology
employed there.

3. Show that (1) can be rewritten as
ut(x, t) =uxx(x, t)+a(v−u)(x, t)+b fR(x, t)

vt(x, t) =− cvx(x, t)+d(u− v)(x, t)

ux(0, t) =ux(1, t) = 0
v(0, t) =Tin(t)

(2)

In particular, exhibit the transformation allowing this reformulation and the expressions of a,b,c and d depend-
ing on αw,αg,βw,βg,γw and L.
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2 First control solution: additional resistance
In this context, one can reasonably neglect the dynamics of the gas temperature compared to the heat provided by the
resistance. This leads to the following simplified dynamics{

ut(x, t) =uxx(x, t)−au(x, t)+b f (x, t)

ux(0, t) =ux(1, t) = 0
(3)

in which we introduced f (x, t) = fR(x, t)+ a
b v(x, t)≈ fR(x, t). In this set-up, the catalyst is equipped with an internal

sensor located at a position x0 and which can be modeled as

y(t) =
1

2ε

∫ x0+ε

x0−ε

u(x, t)dx (4)

where ε is supposed to be small enough.

2.1 Analysis
4. Rewrite (3) as the abstract problem defined on L2([0,1],R){

Ẋ(t) =A ·X(t)+B ·U(·, t)
y(t) =C X(t)

(5)

Specify the dimension of X , the definition of the operators A , B and C and the domain of definition D(A ) of
the operator A .

5. What are the eigenvalues λn of the operator A ? Are they simple? What are corresponding eigenvectors ϕn?

6. Show that (ϕn)n∈N can be chosen s.t. it is an orthonormal basis.

7. How can you then express the solution of (9) (for a given initial condition X0)?

8.* Implement a truncation of this solution in your Simulink model and compare it with the model output. How
does the truncation order influence your results?

9. Justify why a control action is needed for this problem from an applicative point of view.

10. Show that the abstract problem (9) is controllable (specify in which sense).

11. Study if the abstract problem (9) is observable (specify in which sense) according to the values of x0 and ε .

2.2 Output-feedback control

12. Consider the Lyapunov functional candidate

V1(t) =
∫ 1

0
u(x)2dx (6)

Design a full-state control action f to improve the exponential decay rate.

13.* Implement this control law on your Simulink model. Compare with your theoretical results.

14. As only the output (4) is measured in practice, we consider the following observer ût(x, t) =ûxx(x, t)−aû(x, t)+b f (x, t)+ l
(

y(t)− 1
2ε

∫ x0+ε

x0−ε

û(x, t)dx
)

ûx(0, t) =ûx(1, t) = 0
(7)

in which l is a constant gain. Formulate the dynamics of the observation error ũ = u− û and determine its points
spectrum depending on the value of l.
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15. Which value of l is thus suitable for observation?

16.* Implement your observer in Simulink.

17.* Implement now the corresponding output-feedback control strategy.

3 Second control solution: warm-up through the inlet gas temperature
We now aim at studying the second and most standard control strategy, which consists in heating the monolith through
convection with the gas. In this context, the now control variable is U(t) = Tin(t), no internal resistance is present
(namely, f = 0) and the output gas temperature is measured, i.e.,

y(t) =v(1, t) (8)

3.1 Analysis
18. Rewrite (3) as the boundary control problem defined on L2([0,1],R)2

Ẋ(t) =A ·X(t)

βX(t) =U(t)

y(t) =C X(t)
(9)

Specify the dimension of X , the definition of the operators A , β and C and the domain of definition D(A ) of
the operator A .

19. Express (without entirely solving them) the final equations characterizing the eigenvalues (and corresponding
eigenvectors) of the operator A .

20. Propose a procedure to study controllability.

3.2 Output-feedback control
21. Consider the Lyapunov functional candidate

V2(t) =
∫ 1

0
eµxu2dx+

∫ 1

0
eµxv2dx (10)

Design an output-feedback law assuming that a,b,c,d >> 1 and for an appropriate constant µ > 0.

22*. Implement your corresponding control law in Simulink.

23. Conclude on the respective efficiency of the two strategies. What are their respective drawbacks and limitations
from a practical point of view?
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