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Delay-Adaptive Control for Nonlinear Systems
Delphine Bresch-Pietri and Miroslav Krstic, Fellow, IEEE

Abstract—We present a systematic delay-adaptive predic-
tion-based control design for nonlinear systems with unknown
long actuator delay. Our approach is based on the representation
of the constant actuator delay as a transport Partial Differential
Equation (PDE) in which the convective speed is inversely propor-
tional to the unknown delay. We study two different frameworks,
assuming first that the actuator state is measured and relaxing
afterward. For the full-state feedback case, we prove global
asymptotic convergence of the proposed adaptive controller while,
in the second case, replacing the actuator state by its adaptive
estimate, we prove local regulation. The relevance of the obtained
results are illustrated by simulations of a biological activator/re-
pressor system.

Index Terms— Partial differential equation (PDE).

I. INTRODUCTION

T HIS paper addresses the general problem of stabilization
of (potentially) unstable nonlinear systems subject to un-

known constant input delay. Such systems are ubiquitous in ap-
plications, from automotive engines [17], [32] to process in-
dustry [10], [12], [39]. The delay involved in such applications
is typically long, slowly time-varying (thus, often considered as
constant) and therefore highly uncertain.
To prevent transient performance degradation [29], predictor-

based approaches [2], [24], [25] are often considered. Indeed, by
using a system state prediction in lieu of the usual current system
state, this class of control laws provides input delay compensa-
tion. Ideally, the closed-loop system is therefore delay-free and
transient performance is notably improved. Due to this substan-
tial advantage, this technique has received considerable atten-
tion in the past few years, from alternative implementations de-
sign [18], [26], [28] to extension to nonlinear plants [21], [27]
or time-varying delays [3], [4], [30].
However, this technique is well-known to suffer from being

sensitive to delay mismatch [13], [33], [36]. To the best of the
authors’ knowledge, the only previous attempt to derive an
adaptive design for unknown constant delay was carried out
in [22] by applying Padé approximation to approximate the
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input delay. Nevertheless, this technique is only successful for
relatively short delay. The main difficulty in addressing the
general problem of unknown long actuator delay comes from
the inherent nonlinear parametrization.
In recent papers [6], [8], [9], we tackled this difficulty by rep-

resenting the constant actuator delay as an Ordinary Differen-
tial Equation (ODE) cascaded with a transport Partial Differen-
tial Equation (PDE) in which the convective speed is inversely
proportional to the (unknown) delay. Indeed, this representation
introduces the delay parameter in a linear manner and is there-
fore in accordance with adaptive design. Here, we pursue this
approach, which was developed only for linear systems and ex-
tend it to nonlinear dynamics subject to constant input delay.
This is the main contribution of the paper.
We consider here two distinct frameworks. First, in Sec-

tion II, we investigate the case of full-state feedback design,1

specifically assuming that the distributed input, i.e. the history
of the input on a time window of length equal to the delay, is
measured. This corresponds to a dynamical system where delay
arises from a physical transport process, as opposed to compu-
tational or communication-based delay, and in which the dis-
tributed input is measured but not the speed of propagation.2

An example of systems fitting this description is provided as
illustration in Section III-D. In this framework, we establish a
global delay-adaptive prediction-based stability result. Then, as
the distributed input is seldom measured in application, we con-
sider the more realistic case in which both delay and actuator
state are unknown (Section IV). The assumption of the actuator
state being measured is then only alleviated at the expense of
the global validity of the results. Indeed, in this second frame-
work, we establish a local delay-adaptive prediction-based sta-
bility result for which design of consistent delay update laws is
not Lyapunov-based.
The paper is organized as follows. We begin in Section II by

formulating the general problem under consideration. Then, in
Section III, we design a delay-adaptive prediction-based control
in the case of full-state feedback and, in Section IV, in the case
of unmeasured actuator state. In both sections, we formulate a
stability result which is then proved by a Lyapunov analysis
inspired from the elements proposed in [20] and illustrated by
simulation results which enhance the interest of the proposed
approach.
Notations: In the following, we use the common definitions

of class and given in [19]. refers to the Euclidean norm,

1Full-state feedback refers here to a control law in terms of in
which is the actuator state, which is part of the
system state.
2In practice, only finite samples of this infinite-dimensional variable are

known. Therefore, one cannot estimate without uncertainties the delay value
from the time- and space-derivatives of the distributed input.
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the matrix norm is defined accordingly, for
, as and the spatial and norms are

defined as follows:

(1)

For such that , we define the standard pro-
jector operator on the interval as a function of two scalar
arguments (denoting the parameter being update) and (de-
noting the nominal update law) in the following manner:

if and
if and
otherwise.

II. PROBLEM STATEMENT

Consider the following nonlinear plant:

(2)

in which , is a nonlinear function of class such
that , is scalar and is an unknown delay be-
longing to a known interval (with ). The control
objective is to stabilize plant (2) following a prediction-based
approach, despite delay uncertainties. To handle this last point,
we employ an adaptive controller. Before presenting it, we first
further characterize the plant under consideration.
Assumption 1: The plant with scalar is

strongly forward complete.
Assumption 2: There exists a feedback law

such that the nominal delay-free plant is globally exponentially
stable and such that is a class function, i.e. there exist (see
resp. Theorem 4.14 and Theorem 2.207 in [19], [35])
and a class radially unbounded positive definite function
such that for

(3)

(4)

(5)

for given .
Assumption 1 guarantees that (2) does not escape in finite

time and, in particular, before the input reaches the system at
. This is a reasonable assumption to enable stabilization.

The difference from the standard notion of forward complete-
ness [1] comes from the fact that we assume that .
Global exponential stabilizability required by Assumption 2 is
necessary to obtain global adaptive results in presence of delay
(Section III) in the following. However, the local result pre-
sented in Section IV can be obtained with only a relaxed local
version of Assumption 2. For the sake of clarity, we do not
pursue this point in the sequel.

To analyze the closed-loop stability despite delay uncertain-
ties, we use the systematic Lyapunov tools introduced in [21]
and first reformulate plant (2) in the form

(6)

by introducing the following distributed input:

(7)

In details, the input delay is now represented as a coupling with a
transport PDE driven by the input and with unknown convection
speed .
In the remainder of the paper, we study two distinct problems.

In Section III, we investigate delay-adaptive prediction-based
control design under the assumption that this distributed actu-
ator is measured. In Section IV, we alleviate this assump-
tion, at the expense of global validity of the results. In both
cases, we consider that the system state is fully measured.

III. ADAPTIVE CONTROL IN THE CASE
OF FULL-STATE FEEDBACK

In this section, we consider that the actuator state is
measured. In this framework, plant (6) introduces a linear delay
parametrization which enables delay adaptation via Lyapunov
design. Before stating the main result of this section, we formu-
late additional assumptions.
Assumption 3: The function is globally Lipschitz with re-

spect to its second arguments, uniformly in the first argument,
i.e. there exists such that

(8)
This Lipschitz assumption bearing on the unknown parameter

is usual in nonlinear adaptive control to obtain global results
[38].
Assumption 4: The function , the Jacobian matrix ,

the control law and its derivative satisfy the following growth
conditions, for given positive constants , , and

(9)

(10)

Assumption 4 actually encompasses Assumption 1. Assump-
tion 3 and 4 can be found quite restrictive but are necessary to
state a global delay adaptive stability result. An alternative re-
sult which does not require these two assumptions is discussed
later in Section III-C.

A. Control Design

Define, for , the distributed state prediction as

(11)
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which provides a prediction of the system state on the time in-
terval . This expression can be obtained in a straight-
forward manner with a change of variable and from the def-
inition of the distributed input given in (7). When the delay
is known, it can be exactly compensated with the control law

. Therefore, following the certainty equiva-
lence principle, the control law is chosen here as:

(12)

in which the distributed predictor estimate is defined as

(13)

Motivated by Lyapunov analysis (presented in the proof of The-
orem 1), we choose the delay estimator as3

(14)

(15)

where is the standard projector operator on the in-

terval and the transformed state of the actuator is given
by

(16)

in which the scalar function is defined as

(17)

with the transition matrix associated with
the space-varying time-parametrized equation

and
a positive parameter.
Theorem 1: Consider the closed-loop system consisting of

the plant (2), the control law (12), (13) and the delay update law
defined through (14)–(17), satisfying Assumption 1–4. Define
the functional

(18)

in which is the delay estimation error. If
the normalization parameter is chosen as ,
then there exist and (independent of initial
conditions) such that, if

(19)

(20)

3Consider the particular case of a linear dynamics .
In this case, the transition matrix can be explicitly expressed as

and one has with the matrix such that
is Hurwitz. Therefore, and one
recovers the delay update law proposed in [23] or in [8] which also deals with
plant parameters uncertainties.

B. Proof of Theorem 1—Lyapunov Analysis

We exploit the backstepping transformation (16) to provide
a Lyapunov design of the delay update law and to analyze the
stability of the closed-loop system. This transformation allows
to reformulate plant (6) as stated in the following lemma.
Lemma 1: The infinite-dimensional backstepping transfor-

mation (16) together with the control law (12) transform the
plant (6) into

(21)

(22)

(23)

where is the delay estimation error, the scalar
function is defined in (17) and is given by

(24)

in which is the transition matrix associated with the
space-varying time-parametrized equation

.
Proof: First, (21) can be directly obtained from (6) using

(16) and (13). Then, before studying the governing equation of
the transformed distributed actuator, we focus on the dynamics
of the distributed predictor. The temporal and spatial derivatives
of can be expressed as follows:

(25)

(26)

Therefore, using the governing equation of the distributed input
given in (6), one can obtain

(27)
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Consider a given time and define .
Taking a spatial derivative of the latter expression yields the
following equation in , parametrized in

(28)

Introducing the transition matrix associated with the corre-
sponding homogeneous equation, one can solve this equation
and finally get, using the backstepping transformation (16)

(29)

Now, consider the backstepping transformation (16), whose
time- and space-derivatives can be expressed as

(30)

(31)

From there, using both the previously obtained distributed pre-
dictor dynamics (29) and the governing equation of the dis-
tributed input given in (6), one can obtain (22). Finally, the
boundary condition (23) comes from the control law (12).
We are now ready to start the Lyapunov analysis. Define the

following Lyapunov-Krasovskii functional candidate:

(32)

(33)

where the function is the positive definite function introduced
in Assumption 2. Taking a time-derivative of , one can get
with integration by parts and using Assumption 2 and 3

(34)

in which is defined through (15)–(17). We now introduce
two lemmas whose proof is provided in Appendix.
Lemma 2: There exists a positive constant such that

(35)

Lemma 3: There exist positive constants and such
that

(36)

(37)

Using Lemmas 2 and 3 and Young’s inequality, it follows that:

(38)

in which . Therefore, choosing
and

(39)

one can finally obtain the existence of such that

(40)

which leads to the stability result

(41)

To establish this stability result in terms of , using Lemma
2 and Assumption 4, one can observe that there exist positive
constant such that

(42)

(43)

With these inequalities, using Assumption 2 and the definition
of and , respectively, in (18) and (32), one can obtain

(44)

(45)

(46)

and therefore

(47)

Finally, using Assumption 2

(48)
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Matching these two last inequalities gives the stability result
established in Theorem 1.
Finally, to prove convergence of both the system state and the

control, we use Barbalat’s lemma. From the Lyapunov analysis,
integrating (40) from 0 to , one can obtain that and
are square integrable. Further

(49)

From (41), it follows that and are uniformly
bounded. Consequently, is uniformly bounded for any

and so is and in particular . As is con-
tinuous, we get the uniform boundedness of . Finally, we
conclude with Barbalat’s Lemma that as .
Similarly

(50)

in which

(51)

Applying Assumption 4 and using the continuity of together
with the previous considerations on , one can show that this
derivative is uniformly bounded. Therefore, one can conclude
that as .

C. Comments

Theorem 1 states a global asymptotic convergence result,
provided that Assumption 3 and 4 are satisfied. In details, As-
sumption 3 is used in the Lyapunov analysis in (34) to bound the
difference ,
which arises from the comparison between the nom-
inal delay-free dynamics and the actual one

.4 Therefore, this assumption is crucial
to obtain a lower-bound for which does not depend on the
initial conditions.5 Further, Assumption 4 plays a key role in
the derivation of Lemma 2 and 3 and is therefore fundamental
in obtaining a bound which does not depend on the initial
conditions.
Yet, alternatively, one can obtain the following semi-global

asymptotic result without requiring these (restrictive) assump-
tions.
Theorem 2: Consider the closed-loop system consisting of

plant (2) satisfying Assumption 1 and 2, of the control law (12)
and of the delay update law

(52)

4In the same sense that usually, in adaptive control, one is led to consider
the difference in which is the unknown parameter and to
formulate similar Lipschitz assumption with regards to [38].
5Alternatively, one can refer to the Lyapunov analysis developed in Sec-

tion IV-B to see how this difference can be bounded thanks to the mean-value
theorem, without requiring any Lipschitz assumption, but yields bounds de-
pending on the initial conditions.

Fig. 1. Considered system set-up with an Activator-Repressor motif. The
system is fed by a delayed activator protein addition . The activator
protein (concentration ) promotes the expression of itself and of a repressor
protein (concentration ) that represses the expression of the activator protein.
This interaction is represented in the top-right corner, with directed edges
(arrows stand for activation and vertices ended by a line stand for repression; an
arrow linking a node to a node represents the effect of node on node ).

(53)

in which the scalar function and are defined as follows:

(54)

(55)

Define the functional

(56)

There exists (depending on the initial conditions) and a
class function such that, if and

(57)

(58)

For the sake of brevity, we do not detail here the proof of
this theorem, which follows lines similar to those used in the
following section, except from the derivation of the delay update
law which follows from Lyapunov design. We simply highlight
the fact that, in this result, the bounds and depend on the
initial conditions, while Theorem 1 provides bounds that do not
depend on them. Therefore, in this sense, this result is weaker
than Theorem 1 but does not require Assumptions 3 and 4 to
be satisfied. Second, as in the proof below, without Assumption
4, the Lyapunov analysis has to be performed with a -norm
functional instead of the one employed above. This explains
the unusual form of the delay update law (52), (53) in which the
sign function appears (see [40]).

D. Simulation Example

Inthissection,weconsiderasillustrationanactivator/repressor
system studied for example in [11], [37], composed by two pro-
teins:anactivatorproteinthatpromotestheexpressionofitselfand
ofa repressorprotein that represses theexpressionof theactivator



1208 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

Fig. 2. Simulation of the open-loop response of plant (59) with . A stable periodic orbit appears.

protein. Such a circuit, represented in Fig. 1, is known to poten-
tially exhibit a stable periodic orbit, depending on the values of
thebiochemicalparameters.Thisbehavior isofparticular interest
for synthetic biologists, as it can be used as a clockmotif for other
applications in thefields of Systems andSyntheticBiology. It has
been interpreted in [11] as the result of the simultaneousexistence
of an unstable equilibrium point and of an attractivemanifold for
certainparametervaluesof thesystem.
Here, we consider that such a synthetic clock has been de-

signed. We focus on the converse problem of stopping tem-
porarily this clock (i.e., on stabilizing the system towards its
unstable equilibrium), e.g., to synchronize it with another one
for a given experimentation purposes. With this aim in view,
we consider the experimental setup depicted in Fig. 1. The acti-
vator/repressor dynamics is controlled through the introduction
of an additional amount of activator protein inside the system.
As this setup involves transportation through an inlet pipe, an
input delay arises which is constant (assuming that the inlet fluid
has a constant flow rate and that only its activator concentra-
tion changes). This delay is uncertain, due to the involved flow
rate scale. The laboratory experimental set-up is made of a UV
spectrometer located along the inlet pipe and which enables to
detect the (distributed) presence of activator protein along the
pipe. Therefore, the distributed input can be assumed as
known here.6 Finally, we consider that the protein concentra-
tions and are measured, with another spectrometer for
example, assuming that concentrations in the solution are lo-
cally measured and that these signals are representative of the
global distribution in the solution.
Following [37], the systems dynamics write:

(59)

in which is the concentration of activator protein, the re-
pressor one and in which and are Hill functions associated
with proteins expressions given by

6As underlined previously, however, it may be difficult to use this distributed
input to directly estimate the delay value. Indeed, due to sampling and noise,
the computation of its spatial- and time-derivative would likely result into a
non-negligible estimation error. Yet, this information could be used to sharpen
the adaptive technique, for example to improve the initial delay estimate.

where , and . For
this parameter, there exists an unstable equilibrium point

and the system exhibits a periodic motif
which is provided in Fig. 2.
A control law satisfying Assumption 2 is

(60)

for which an associated Lyapunov function is simply
. Further, one can show that

this control law and the vector field involved in the error
dynamics

(61)

satisfy Assumption 4 in terms of the error variables
and .
Fig. 3 shows simulation results corresponding to the closed-

loop response obtained with control law (12), (13) together with
the delay update law defined through (14)–(17) and for initial
conditions , . The delay up-
date gain is chosen as , and the delay lower and upper
bounds as and . Two initial delay estimates
are considered, and respec-
tively. For the sake of comparison, a prediction-based control
without delay adaptation, i.e. with is
also provided. For the sake of realism, the control law has been
lower-saturated by zero, as it represents a non-negative variable;
however, for the chosen set of initial conditions, this modifi-
cation does not impact the significance of the obtained results.
For implementation, the various integrals involved in the con-
troller were discretized using a trapezoidal approximation and
the transition matrix involved in the update law was numerically
calculated by direct integration of the corresponding matrix dif-
ferential equation.
First, one can notice that, as stated in Theorem 1, the pro-

posed adaptive controller achieves asymptotic stabilization in-
dependently on the initial delay estimate the nominal predic-
tion-based strategy fails (without delay adaptation, the system
response continues to exhibit an oscillatory behavior). This is
due to the state delay which appears here due to delay mis-
match and induces a delay differential equation which is known
to be responsible of oscillations [14]. Decreasing the delay esti-
mation error would in all likelihood suppress these oscillations
and achieve stabilization. This is the main interest of the pro-
posed result, which enables stabilization despite significant ini-
tial delay estimation errors.
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Fig. 3. Simulation results of the plant (59) with , , and respectively and . The update gain
is chosen as . (a) Evolution of system state two different values of initial delay estimate. The red dotted curves represent the equilibrium set-point. (b)
Control law and delay update law for two different values of initial delay estimate.

Second, it is worth noticing that the delay update law does not
provide convergence of the delay estimate toward the unknown
delay value. This phenomenon is well-known in adaptive con-
trol [15], [16], but does not prevent the plant to converge.

IV. CONTROL DESIGN IN THE CASE OF UNMEASURED
DISTRIBUTED INPUT

In this section we consider the actuator state to be un-
measured, as is typically the case in applications.

A. Control Design

To deal with the fact that the actuator state is unmeasured, we
introduce a distributed input estimate

(62)

Applying the certainty equivalence principle, the control law is
chosen as

(63)

in which the distributed predictor estimate is defined in terms of
the actuator state estimate as

(64)
and the delay estimate satisfies one of the following assump-
tions.

Assumption 5: There exist a function and positive pa-
rameters and such that

(65)

(66)

Example 1: Consider the following instantaneous cost func-
tion, proposed in [6] for a linear plant

(67)

where is a -units of time ahead prediction
of the system state, starting from the initial condition
and assuming that the delay value is . Then, using a steepest
descent argument, one can take

(68)

with

(69)

(70)

This update law satisfies Assumption 5 [34], provided that the
initial delay estimate is sufficiently close to the true delay value
(no local minima interference). This condition is in accordance
with the local condition stated in Theorem 3 below. This delay
update law is further discussed in Section IV-D.
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Assumption 6: There exist a function , a positive param-
eter and class functions and such that

(71)

(72)

in which the functional is defined as

(73)

Example 2: Applying the certainty equivalence principle to
the delay update law stated in Theorem 2, one can choose

(74)

in which is the following backstepping transformation of the
distributed input estimate

(75)

and the scalar functions and are given by

(76)

(77)

Applying elements from the Lyapunov analysis detailed below,
one can show that this update law satisfies Assumption 6. We
do not detail this point here, for sake of clarity and conciseness.
This delay update law is further discussed in Section IV-D.
Theorem 3: Consider the closed-loop system consisting of

plant (2) and control law (63) satisfying Assumption 1 and 2
with a delay estimate satisfying either Assumption 5 or 6. Define
the functional

(78)

Then, there exist (potentially depending on the initial
conditions), and a class function such that, if

and if , then

(79)

(80)

Theorem 3 is a local result, requiring the initial delay estimate
to be sufficiently close to the unknown delay value and the initial

Fig. 4. Relations between the different variables involved in the Lyapunov
analysis. The black solid edges represent relations inherent to the variable dy-
namics while the dashed cyan line represents a relation coming from Lyapunov
derivation. Edges are oriented from the variable whose dynamics involves the
designated one.

system state to small enough. Assumptions 5 and 6 allow one
to consider many choices of delay update laws, consistent with
the stability property (79) of the controller. In a nutshell, As-
sumption 5 requires the delay update law not to make the delay
estimation worse which is in accordance with various identifi-
cation techniques [31]. Then, employing such a delay on-line
update law would hopefully provide delay identification, pro-
vided that persistence of excitation is guaranteed. This, ideally,
would allow a large flexibility for control. On the other hand,
Assumption 6 could be interpreted as a guarantee that compu-
tational errors while computing a delay update law satisfying
Assumption 5 do not jeopardize closed-loop stability. Alterna-
tively, other kinds of delay update laws such as the one proposed
in Example 2 can be considered. It is worth noticing that the con-
dition stated in Assumption 6 cannot be directly checked as it
involves the unknown delay value. For strict implementation, a
constructive but more restrictive choice is to employ instead
of in definition (73). In both cases, Theorem 3 requires the
delay update law to be slow enough, i.e., the update gain to be
small enough, to be consistent with closed-loop stability.
To prove this result, we introduce infinite-dimensional tools

similar to the ones introduced in the previous section.

B. Proof of Theorem 3—Lyapunov Analysis

To ease the understanding of the Lyapunov analysis provided
in this section and of its mechanism, the interested reader can
refer to Fig. 4 as a reading guide, as it summarizes the main
relations between the different involved variables, and to Sec-
tion IV-C which contains several comments. One can also refer
to [40] for examples of stability analysis in terms of -norms
and to [6] in which a similar Lyapunov analysis is performed
for linear systems.
As previously, to provide stability analysis, we first reformu-

late (6) using a suitable backstepping transformation.
Lemma 4: The backstepping transformation of the distributed

input estimate (62)

(81)

in which the distributed predictor estimate is defined in (64),
together with the control law (63), transforms plant (6) into

(82)
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(83)

(84)

(85)

(86)

in which

(87)

is the distributed input estimation error and

(88)

(89)

(90)

(91)

(92)

where is the transition matrix associated with the
space-varying time-parametrized equation

.
Proof: This proof follows lines similar to those used in

the previous section. First, (82) can be directly obtained from
definitions (7), (81) and the one of . Second, one can easily
obtain from (62) that the estimate distributed input satisfies

(93)

(94)

As in the previous section, considering a given and de-
noting , one can show that
satisfies the following equation in , parametrized in

Defining the transition matrix associated to the corresponding
homogeneous equation, one can solve this equation and obtain

(95)

Now, matching the time- and space-derivatives of the backstep-
ping transformation (81) with the governing (93) and (95), one
can obtain (83) and use the backstepping transformation (81)
to express the functions and in terms of and its spa-
tial-derivative.
In the following, we also need the governing equation of its

spatial derivative, which are given in the following lemma, the
proof of which is provided in Appendix.
Lemma 5: The spatial derivatives of the distributed input es-

timation error (87) and of the backstepping transformation (81)
satisfy

(96)

(97)

(98)

in which , , , , ,
and whose expressions are not

provided for the sake of brevity of the exposition but can be
found in [7].
We are now ready to start the Lyapunov analysis, considering

the following Lyapunov-Krasovskii functional candidate

(99)
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in which and is defined in Assumption 2. Taking
a time-derivative of and using the properties stated in As-
sumption 2, one can obtain the following inequality:

(100)
in which we have applied the mean-value theorem to introduce

which is a variable between and .
Therefore, taking a time-derivative of and using integration
by parts, one can get

(101)

To bound the positive terms remaining in this last expression,
we use technical lemmas which are provided in Appendix for
sake of clarity of the main exposition and define the following
alternative functional:

(102)

As is continuously differentiable and the variable is
between and , applying Lemma 7 given in
Appendix, one can obtain the existence of a function
such that

(103)

Then, introducing and using
Lemma 8 provided in Appendix, one can obtain

(104)

We now distinguish two cases depending on the type of delay
update law that is considered.
1) Lyapunov Analysis the First Class of Delay Update Law

(Assumption 5): We use Assumption 5 to rewrite (104). Denote
. To ensure that the last terms in (104) are initially

negative, we choose the parameters such that

(105)

(106)

Introduce the functions

(107)
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(108)

and choose . Then, for

(109)

Now, using the following inequality, which results from
Young’s inequality

(110)

one can obtain

(111)

Therefore, by choosing for a given

(112)

(113)

(114)

one can ensure that

(115)

and consequently the following inequality which concludes the
Lyapunov analysis:

(116)

2) Lyapunov Analysis for the Second Class of Delay Update
Law (Assumption 6): Observing that there exists two class
functions such that and are equivalent, Assumption 6 can
easily be reformulated in terms of . Under this assump-
tion, one can rewrite (104) Denote . To ensure that
the last terms in (104) are negative, we choose the parameters
as stated in (105), (106). Now, introduce the functions

(117)

(118)

and choose . Then, for

(119)

Therefore, by choosing for a given

(120)

the same choices and conclusions than in the previous section
can be made and yield (115) and (116). This concludes the Lya-
punov analysis.
To provide a stability result in terms of , using Assumption

2, one can show that there exist two class functions and
such that . Then

(121)

The stability result stated in Theorem 3 follows with
.

We now use Barbalat’s lemma to prove convergence. From
the Lyapunov analysis, integrating (115) from 0 to , one can
obtain that and are integrable. Further

(122)

From (116), it follows that , , and
are uniformly bounded. Consequently, applying

Lemma 7, is uniformly bounded. As is continuous,
we get the uniform boundedness of and consequently
of . Finally, we conclude with Barbalat’s Lemma that

as .
Similarly

(123)

in which

(124)

Applying Lemma 7 and 6, one can bound this quantity in terms
of which is uniformly bounded. Therefore, one can conclude
that as .
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Fig. 5. Simulation results of the plant (59) with , , and and with three different delay update laws: (68)

satisfying Assumption 5, (74)–(77) satisfying Assumption 6 and . The update gains are chosen as and for the two first delay update
laws. (a) Evolution of system state three different delay update laws. The red dotted curves represent the equilibrium set-point. (b) Control law and delay update
law for three different delay update laws.

C. Comments

Consider Fig. 4, summarizing the main relations between the
dynamics (82)–(86) and (96)–(98). From there, one can see that
to study the system state stability, it is necessary to take into
account the dynamics of and and, sequentially, the
ones of and and therefore the one of .
This explains the choice of the Lyapunov functional (99).
Finally, a technical point that is worth noticing is the

reason why the analysis is based on -norms and not
-norms like in the previous section. One can observe that

most of the bounding operations realized in the Lyapunov
analysis are based on Lemma 6 and 7 given in Appendix.
These two lemmas involve the system state norm and not
its square. Without additional assumptions, like the growth
condition stated in Assumption 4 in Section III, these bounds
cannot be sharpened and it is therefore necessary to include a
term in in the Lyapunov analysis and not its square. This
yields the choice of the first term in the Lyapunov
functional (99). Observing (100), it is therefore necessary to
study -norms of the spatial variables in order to bound the
remaining positive term . This also explains
why Theorem 2, obtained by relieving Assumption 4, is
stated with -norms.

D. Simulation Example

To illustrate the merits of our approach, consider again the
illustrative example considered in Section III-D. Now, we con-
sider a slightly different experimental setup in which no UV
spectrometer is used. The distributed input is therefore
unmeasured.

Fig. 5 reports the simulation results obtained for the same
initial conditions, , and
while , and for the two delay update laws presented in

Examples 1 and 2. For the sake of comparison, the closed-loop
response without adaptation, i.e., with is
also provided.
First, one can observe that the first two adaptive prediction-

based controller achieve stabilization while the third one fails.
Like previously, this is due to the fact that the delay mismatch
obtained in the third case results is too important to enable sta-
bilization. On the other hand, the proposed adaptive strategy al-
lows to reduce this mismatch and to stabilize the plant. This is
the main interest of the proposed result, which increases the sta-
bility domain, meaning that, for similar (relatively small) initial
estimation errors, the adaptive prediction-based controller pro-
vides stabilization where a constant-delay one can fail.
Second, it is interesting to notice that the first delay update

law provides notable delay estimation improvements at the be-
ginning of the simulation, i.e., before 2.5 s. This is consistent
with the employed update law as the cost function exhibits its
most pronounced gradient on this time interval. Yet, this update
law does not monotonically increase, as should be the case from
its definition. This can be reasonably attributed to discretization.
Neither this update law nor the second converges to the true
delay, but the first one could be reasonably expected to do so,
would persistence of excitation exist.
Finally, we wish to stress that the selection of the update

gain is a key step in the controller tuning, influencing the
closed-loop performance. According to the presented results
(both Theorems 1 and Theorem 3), this gain has to be chosen
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sufficiently small to guarantee stabilization. However, choosing
an extremely small update gain results in slow delay adapta-
tion and therefore in very poor closed-loop performance. Con-
sequently, a tradeoff has to be reached while selecting the adap-
tation parameter. In all likelihood, the expressions of pro-
vided in the Lyapunov analysis, respectively, in (39) and (112)
are conservative and cannot be used in practice to choose the
update gain value. Analysis of the closed-loop performance in-
duced by the proposed controller is a direction of future work.

V. CONCLUSION

In this paper, we have presented the first systematic delay-
adaptive prediction-based control design for nonlinear systems
with unknown but constant long actuator delay. We proposed
two different asymptotic results, according to availability of the
actuator state measurement. For the full-state feedback case, the
designed adaptive controller has been proven to be globally sta-
bilizing while, when the actuator state is replaced by its adaptive
estimate, local stability and regulation are achieved. The pro-
posed results may be of particular interest in the case of an inte-
gral-type transport delay systems (corresponding to a Plug-Flow
assumption [5]), which, as shown in [41], can be reformulated
as nonlinear plant with constant input-delay. Extension to the
problems with unknown plant parameters, trajectory tracking or
output feedback are directions for future work.

APPENDIX
A. Proof of Technical Lemmas Used in Section III

1) Proof of Lemma 2: The distributed predictor satisfies the
spatial ODE

(125)

(126)

Therefore, as , as is continuous and satisfies
Assumption 1 and 4 and as satisfies the growth condition in-
troduced in Assumption 1, there exists such as defined in
the Lemma.
2) Proof of Lemma 3: Consider the expression of given in

(24) which involves the transition matrix . By definition, for
given and , satisfies the differential equation

(127)

(128)

and therefore its norm satisfies, for given and ,
and for any

(129)

with . Consequently, using Assumption 4, one
can obtain the following upper bound:

(130)
From there, using Assumption 4, Lemma 2 and Cauchy-
Schwartz’s inequality, one can obtain the existence of such

as stated in the Lemma. With the same arguments, using (4)
projector operator properties and straightforward bounding
techniques, one obtains the existence of such that

3) Proof of Lemma 5: Taking a spatial derivative of (85),
one can obtain the governing equation in (96) and, from the
boundary condition (86), that which gives, re-
placing in (85), the boundary condition in (96).
The exact same arguments applied to (83), (84) governing the

backstepping transformation give system (97).
Taking a spatial derivative of the first equation in (97) give the

one in (98). Finally, using the first equation in (97) for ,
one can obtain

(131)

in which can be reformulated by taking a
time derivative of the boundary condition in (97).

B. Technical Lemmas Used in the Lyapunov Analysis in
Section IV

Lemma 6: There exists class functions and such
that

(132)

(133)

Proof: The distributed predictor estimate satisfies the spa-
tial ODE

(134)

(135)

Therefore, as , as is continuous and as the plant
is strictly forward complete, there exists a class function
such as introduced in the Lemma. Alternatively, using the

definition (81), one can obtain

(136)

(137)

and, from the same reason that previously, obtain the existence
of such as defined in the lemma.
Lemma 7: There exist functions such that, for

all

(138)

(139)

Proof: By integration, one gets the following inequality:

(140)
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Rewriting thanks to (81) and using Lemma 6 yield the exis-
tence of the desired function . Similar arguments yield the
existence of .
Lemma 8: There exist functions and a con-

stant such that

(141)

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)

(152)

(153)

Proof: From the expression of and the backstepping
transformation (81), one can obtain

(154)

From there, Lemma 6 together with the continuity of , and
of its derivative give the existence of such as introduced in
(141). The exact same arguments yield to the existence of
introduced in (142). From the definition of , one can get

(155)

Applying Lemma 6 to this expression give (143).
Now, consider the expression of . The same arguments that

in the proof of Lemma 3 yield

(156)

From there, using the backstepping transformation (81) to ex-
press and as functions of respectively and

and , and , Lemma 6 and the con-
tinuity of , and of their derivatives, give the existence of
such as introduced in (146).
From the expression of , applying the mean-value theorem,

one can obtain the existence of between and
such that

(157)

Using Lemma 7 for , Lemma 6, the previous considerations
on and the continuity of the derivative of , one can then
bound as desired and obtain the
existence of as stated in (147). Similar considerations applied
to yield the existence of and as defined in
(148).
From the definitions of , , and (one can refer to [7]

for complete calculation of these functions), one can express
these functions in terms of and its derivative
and, using Lemma 6 together with the fact that and are class
functions, obtain the existence of such as introduced in

(144), of in (145) and similarly derive (149) and (150). Then,
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observing that the higher order spatial derivative term appearing
in the product can be bounded, using integration by part

(158)

Equations (151) and (152) can be obtained from the previously
presented arguments.
Finally, the expression (153) can be obtained by lengthy

calculations applying triangle inequality to the definition of
(provided in details in [7]). Indeed, and

can easily be bounded as desired and the same consid-
erations as previously apply to . The main difficulties arise
while bounding . Applying the triangle inequality to
and previous arguments, one obtain a term in as stated
in (153) and one in . Two terms in
and can also be obtained, as the following terms appear
in the expression of :

(159)

(160)

with and between and and applying
the same considerations as previously. Finally, the first term in
(153) can be obtained by a careful analysis of the expression of

involved in .
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