
Automatica 45 (2009) 2074–2081
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Adaptive trajectory tracking despite unknown input delay and plant parametersI

Delphine Bresch-Pietri, Miroslav Krstic ∗
Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA

a r t i c l e i n f o

Article history:
Received 10 September 2008
Received in revised form
19 January 2009
Accepted 29 April 2009
Available online 13 June 2009

Keywords:
Delay systems
Adaptive control

a b s t r a c t

In a recent paper we presented the first adaptive control design for an ODE system with a possibly large
actuator delay of unknown length.We achieved global stability under full state feedback. In this paper we
generalize the design to the situationwhere, besides the unknown delay value, the ODE also has unknown
parameters, and where trajectory tracking (rather than equilibrium regulation) is pursued.
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1. Introduction

Input delay arises in many forms, from an actual physical
transport delay in various chemical process systems, hydraulically
actuated systems, and combustion systems, to the problemswhere
computational delay manifests itself as being equivalent to input
delay. Until recently, the only results on adaptive control of
systems with input delays dealt only with uncertain parameters
in the ODE part of the system (Evesque, Annaswamy, Niculescu,
& Dowling, 2003; Niculescu & Annaswamy, 2003; Ortega &
Lozano, 1988) but not with uncertainty in the delay value itself.
The importance of designing adaptive controllers for unknown
delay was recognized in Diop, Kolmanovsky, Moraal, and van
Nieuwstadt (2001) and Krstic and Banaszuk (2006), however only
approximation-based ideas for limited classes of plants were dealt
with. The robustness of adaptive backstepping control for linear
ODEs to dynamic perturbations that include input delay was
studied in Zhou, Wang, and Wen (2008), however the nominal
system did not involve delay and the delay was not estimated nor
compensated by the controller.
In a recent paper (Bresch-Pietri & Krstic, 2009) we presented

the first results on delay-adaptive control for a general class of
plants, under full state feedback. This result is global—including
being global in the initial delay value estimate (one can arbitrarily
underestimate or overestimate the delay value initially, and still
achieve stabilization adaptively).

I The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Murat Arcak
under the direction of Editor Andrew R. Teel.
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However, the result in Bresch-Pietri and Krstic (2009) contains
two limitations, one made for pedagogical reasons and the other
which is fundamental. The limitation for which the reason is
pedagogical is in assuming that there are no unknown parameters
in the ODE. This limitation is being removed by this paper. This
limitation was imposed in Bresch-Pietri and Krstic (2009) to
prevent the novel ideas on how to develop global adaptivity in
the infinite-dimensional (delay) context from being buried under
standard but nevertheless complicated details of ODE adaptive
control.
The other limitation in Bresch-Pietri and Krstic (2009), which

is fundamental, is in assuming that the full actuator state is
measured, though the delay value is completely unknown. The
physical meaning of this is that the actuator delay is modeled as
a transport process, to which the control designer has physical
access for measurement but the speed of propagation of this
transport process is completely unknown. Aswe explain in Bresch-
Pietri and Krstic (2009), the problem where the actuator state is
not measurable and the delay value is unknown is not solvable
globally, since the problem is not linearly parametrized. We show
in Bresch-Pietri and Krstic (2009) how one can solve it locally,
however, this is not a very satisfactory result, since it is local both
in the initial state and in the initial parameter error. In otherwords,
the initial delay estimate needs to be sufficiently close to the true
delay. (The delay can be long, but it needs to be known quite
closely.) Under such an assumption, one might as well use a linear
controller and rely on robustness of the feedback law to small
errors in the assumed delay value.
So, for this reason, in this paper we continue with a full-state

feedback design, specifically assuming the measurement of the
actuator state. In Bresch-Pietri and Krstic (2009) we discussed
all the possible problems that one can consider with respect
to the availability or unavailability of measurement of the ODE
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state, the actuator state, the knowledge (or lack of knowledge)
of the delay value, and the knowledge (or lack thereof) of the
ODE parameters. There is a total number of 14 distinct problem
combinations. Here we focus on the most interesting one of them,
with both the ODE parameters and the delay value unknown, but
with full state measurement. An extension to the case where only
an output (and not the complete state) of the ODE is available
for measurement is easy (with the method of backstepping and
Kreisselmeier observers). We don’t pursue it here for consistency
of concepts—since we must measure the actuator state, we might
as well present a result with full measurement of the ODE state.
As in most of the research on control of unstable plants with a

long actuator delay (Artstein, 1982; Evesque et al., 2003; Fiagbedzi
& Pearson, 1986; Gu & Niculescu, 2003; Jankovic, 2006a,b, 2008;
Klamka, 1982; Krstic, 2008a,b; Krstic & Smyshlyaev, 2008b; Kwon
& Pearson, 1980; Manitius & Olbrot, 1979; Michiels & Niculescu,
2003, 2007; Mirkin, 2004; Mondie & Michiels, 2003; Niculescu &
Annaswamy, 2003; Olbrot, 1978; Richard, 2003; Tadmor, 2000;
Watanabe & Ito, 1981; Watanabe, 1996; Zaccarian & Nesic, 2006;
Zhong, 2006a,b; Zhong & Mirkin, 2002), the essence of our
approach is ‘‘predictor feedback,’’ which we recently showed
in Krstic (2008a) and Krstic and Smyshlyaev (2008b) to be a form
of backstepping boundary control for PDEs (Krstic & Smyshlyaev,
2008a,c; Smyshlyaev & Krstic, 2004, 2005) and extended to
nonlinear plants (Krstic, 2008b).
In this paper we generalize the design from Bresch-Pietri and

Krstic (2009) in two major ways: we extend it to ODEs with
unknown parameters and extend it from equilibrium regulation to
trajectory tracking. A significant number of new technical issues
arise in this problem. The estimation error of the ODE parameters
appears in the error models of both the ODE and of the infinite-
dimensional (delay) subsystem, which is reflected also in the
update law. The update law has to also deal appropriately with
ensuring stabilizability with the parameter estimates, for which
projection is employed. Finally, our approach for dealing with
delay adaptation involves normalized Lyapunov-based tuning, a
rather non-standard approach as compared to finite-dimensional
adaptive control. In this framework, we need to bound numerous
terms involving parameter adaptation rates (both for the delay
and for the ODE parameters) in the Lyapunov analysis. Some of
these terms are vanishing (when the tracking error is zero), while
the others (which are due to the reference trajectory) are non-
vanishing. These terms receive different treatment though both
are bounded by normalization and their size is controlled with the
adaptation gain.
We begin in Section 2 by defining the problem and present

the adaptive control design and the main stability theorem in
Section 3. Simulation results are shown in Section 4, which is then
followed by the stability proof in Section 5.

2. Problem formulation

We consider the following system

Ẋ(t) = A(θ)X(t)+ B(θ)U(t − D) (1)
Y (t) = CX(t), (2)

where X ∈ Rn is the ODE state, U is the scalar input to the entire
system, D > 0 is an unknown constant delay, the system matrix
A(θ) and the input vector B(θ) are linearly parametrized, i.e.,

A(θ) = A0 +
p∑
i=1

θiAi (3)

B(θ) = B0 +
p∑
i=1

θiBi, (4)
and θ is an unknown but constant parameter vector that belongs
to the convex set

Π =
{
θ ∈ Rp|P (θ) ≤ 0

}
, (5)

where, by assuming that the convex function P : Rp → R is
smooth, we assure that the boundary ∂Π ofΠ is smooth.

Assumption 1. The set Π is bounded and known. A constant D̄ is
known such that D ∈]0; D̄].

To make stabilization and tracking possible in the presence of
unknown parameters, we make some assumptions and illustrate,
with the help of an example introduced below, that these
assumptions are reasonable. In the sequel, C0(Π) and C1(Π) is
the usual notation for continuous and continuously differentiable
functions (on the setΠ ), respectively.

Assumption 2. Weassume that the pair (A(θ), B(θ)) is completely
controllable for each θ . Furthermore, we assume that there exists
a triple of vector/matrix-valued functions (K(θ), P(θ),Q (θ)) such
that K ∈ C1(Π), P ∈ C1(Π), Q ∈ C0(Π), the matrices P(θ)
and Q (θ) are positive definite and symmetric, and the following
Lyapunov equation is satisfied for all θ ∈ Π :

P(θ)(A+ BK)(θ)+ (A+ BK)(θ)TP(θ) = −Q (θ). (6)

Example 1. Consider the example of a potentially unstable plant

Ẋ1(t) = θX1(t)+ X2(t) (7)

Ẋ2(t) = U(t − D) (8)
Y (t) = X1(t), (9)

where we assumeΠ = [−θ; θ̄ ] and define

A(θ) = A0 + θA1 =
(
0 1
0 0

)
+ θ

(
1 0
0 0

)
(10)

B = B0 =
(
0
1

)
. (11)

This is a linear system in the strict-feedback form (Krstic,
Kanellakopoulos, & Kokotovic, 1995). Using the backstepping
method we construct the triple (K , P,Q ) as

K(θ) = −
(
1+ (θ + 1)2 θ + 2

)
(12)

P(θ) =
1
2
Q (θ) =

(
1+ (1+ θ)2 1+ θ
1+ θ 1

)
, (13)

which satisfies the Lyapunov equation (6).

Assumption 3. The quantities

λ = inf
θ∈Π
min {λmin(P(θ)), λmin(Q (θ))} (14)

λ̄ = inf
θ∈Π

λmax(P(θ)) (15)

exist and are known.

Example 2 (Example 1 Continued). One can show that the
eigenvalues of P(θ) are

λmax(P(θ)) =
2+ (θ + 1)2 + |θ + 1|

√
(θ + 1)2 + 1

2
(16)

λmin(P(θ)) =
1

λmaxP(θ)
, (17)

fromwhich λ and λ̄ are readily obtained over the setΠ = [−θ; θ̄ ].
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Assumption 4. For a given smooth function Y r(t), there exist
known functions X r(t, θ) and U r(t, θ), which are bounded in t and
continuously differentiable in the unknown argument θ onΠ , and
which satisfy

Ẋ r(t, θ) = A(θ)X r(t, θ)+ B(θ)U r(t, θ) (18)

Y r(t) = CX r(t, θ). (19)

Example 3 (Example 2 Continued). Take Y r(t) = sin(t). Then, the
reference trajectory pair for the state and input is

X r(t, θ) =
(

sin(t)
cos(t)− θ sin(t)

)
(20)

U r(t, θ,D) = − sin(t + D)− θ cos(t + D). (21)

Both functions are bounded in t and continuously differentiable
in θ .

3. Control design

To prepare for our adaptive control design, we represent the
plant as

Ẋ(t) = A(θ)X(t)+ B(θ)u(0, t) (22)
Y (t) = CX(t) (23)
Dut(x, t) = ux(x, t), x ∈ [0, 1) (24)
u(1, t) = U(t), (25)

where

u(x, t) = U(t + D(x− 1)). (26)

The representation of the pure delay as a transport PDE allows a
linear parameterization in the unknown delay D.
We consider reference trajectories X r(t) and U r(t), such as

described in Assumption 4. Let us introduce the following error
variables

X̃(t) = X(t)− X r(t, θ̂ ) (27)

Ũ(t) = U(t)− U r(t, θ̂ , D̂) (28)

e(x, t) = u(x, t)− ur(x, t, θ̂ ), (29)

with an estimate θ̂ of the unknown θ . When D and θ are known,
one can show that the control law

U(t) = U r(t)− KX r(t + D)

+ K
[
eADX(t)+ D

∫ 1

0
eAD(1−y)Bu(y, t)dy

]
(30)

achieves exponential stability of the equilibrium (X̃, e) = 0,
compensating the effects of the delay D.
When D and θ are unknown, we employ the control law

U(t) = U r(t, θ̂ , D̂)− K(θ̂)X r(t + D̂, θ̂ )+ K(θ̂)
[
eA(θ̂)D̂(t)X(t)

+ D̂(t)
∫ 1

0
eA(θ̂)D̂(t)(1−y)B(θ̂)u(y, t)dy

]
, (31)

based on the certainty equivalence principle. The update laws for
the estimates D̂ and θ̂ are chosen based on the Lyapunov analysis
(presented in Section 5) as

˙̂D(t) = γ1Proj[0,D̄]{τD(t)} (32)

˙̂
θ(t) = γ2ProjΠ {τθ (t)}, (33)
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Fig. 1. The system response of the system (1)–(2) with the reference trajectory
(20)–(21) for D = 1, θ = 0.5, θ̂ (0) = 0 and D̂(0) = 0.

with adaptation gains γ1 and γ2 chosen as positive and ‘‘small
enough’’ and with

τD(t) = −

∫ 1
0 (1+ x)w(x, t)K(θ̂)e

A(θ̂)D̂(t)xdx

1+ X̃(t)TP(θ̂)X̃(t)+ b
∫ 1
0 (1+ x)w(x, t)

2dx

×

(
(A+ BK)(θ̂)X̃(t)+ B(θ̂)w(0, t)

)
(34)

τθ (t) =
2X̃(t)TP(θ̂)/b−

∫ 1
0 (1+ x)w(x, t)K(θ̂)e

A(θ̂)D̂(t)xdx

1+ X̃(t)TP(θ̂)X̃(t)+ b
∫ 1
0 (1+ x)w(x, t)

2dx

× (AiX(t)+ Biu(0, t))1≤i≤p . (35)

The matrix P is defined in Assumption 2, the standard projector
operators are given by

Proj[0,D̄]{τD} = τD

0, D̂ = 0 and τD < 0
0, D̂ = D̄ and τD > 0
1, else

(36)
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ProjΠ {τθ } = τθ


1, θ̂ ∈ Π̊

or ∇θ̂P
Tτ ≤ 0

I −
∇θ̂P∇θP

T

∇θ̂P
T∇θP

, θ̂ ∈ ∂Π

and ∇θ̂P
Tτ > 0.

(37)

The transformed state of the actuator is needed in the update
law and is defined as

w(x, t) = e(x, t)− D̂(t)
∫ x

0
K(θ̂)eA(θ̂)D̂(t)(x−y)B(θ̂)e(y, t)dy

− K(θ̂)eA(θ̂)D̂(t)xX̃(t) (38)

and the constant b is chosen such that

b ≥ 4 sup
θ̂∈Π

|PB|2(θ̂)
D̄
λ
. (39)

Theorem 1. Let Assumptions 1–4 hold and consider the closed-loop
system consisting of (22)–(25), the control law (31) and the update
laws defined by (32)–(39). There exists γ ∗ > 0 such that for any
γ ∈ [0, γ ∗[, there exist positive constants R and ρ (independent
of the initial conditions) such that, for all initial conditions satisfying
(X0, u0, D̂0, θ0) ∈ Rn × L2(0, 1)×]0, D̄] ×Π , the following holds:

Υ (t) ≤ R
(
eρΥ (0) − 1

)
, ∀t ≥ 0, (40)

where

Υ (t) = |X̃(t)|2 +
∫ 1

0
e(x, t)2dx+ D̃(t)2 + θ̃ (t)T θ̃ (t). (41)

Furthermore, asymptotic tracking is achieved, i.e.,

lim
t→∞

X̃(t) = 0, lim
t→∞

Ũ(t) = 0. (42)

4. Simulations

We return to the system from Examples 1–3 and present
simulation results for the closed-loop system consisting of the
plant (1)–(2), the control law (31) and the update laws defined
through (32)–(39). We focus on the issues arising from the large
uncertainties in D and θ and from the tracking problem with the
reference trajectory (20)–(21). We take D = 1, θ = 0.5, D̄ = 2D =
2, θ = 0, θ̄ = 2θ = 1. We pick the adaptation gains as γ1 = 10,

γ2 = 2.3 and the normalization coefficient as b =
4|̄PB|2 D̄
λ
= 3200.

We show simulation results for X1(0) = X2(0) = 0.5, θ̂ (0) = 0,
and two different values of D̂(0).
Fig. 1 shows that, as Theorem 1 predicts, perfect asymptotic

tracking is achieved (in a single simulation) for the output, state,
and input, despite starting with an initial delay estimate of D̂(0) =
0, namely, for a large parametric uncertainty andwith no predictor
feedback initially. Fig. 2 shows two distinct simulations, starting
from two extreme initial values for the delay estimate, one at zero,
and the other at twice the true delay value. The dashed simulation
starts with a predictor feedback that initially overcompensates the
delay, but it later adjusts the value of the delay estimate to obtain
a stabilizing value of this parameter in the predictor feedback.
In Fig. 2 we observe that θ̂ (t) converges to the true θ in

both simulations, whereas this is not the case with D̂(t). This is
consistent with the theory. By examining the error systems (44),
(45), with the help of a persistency of excitation argument, we
could infer the convergence of θ̂ (t) but not of D̂(t).
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Fig. 2. The system response of the system (1)–(2) with the reference trajectory
(20)–(21) for D = 1, θ = 0.5, θ̂ (0) = 0 and two dramatically different initial
conditions for D̂: D̂(0) = 0 and D̂(0) = D̄ = 2D = 2. Note that the solid plots in
this figure correspond to the same simulation as in Fig. 1.

5. Proof of the main result

In this section,we prove Theorem1.We start by considering the
transformation (38) along with its inverse

e(x, t) = w(x, t)+ D̂(t)
∫ x

0
K(θ̂)e(A+BK)(θ̂)D̂(t)(x−y)B(θ̂)

×w(y, t)dy+ K(θ̂)e(A+BK)(θ̂)D̂(t)xX̃(t). (43)

Using these transformations and the models (1) and (18), the
transformed system is written as

˙̃X(t) = (A+ BK)(θ̂)X̃(t)+ B(θ̂)w(0, t)+ A(θ̃)X(t)

+ B(θ̃)u(0, t)−
∂X r

∂θ̂
(t, θ̂ ) ˙̂θ(t) (44)

Dwt(x, t) = wx(x, t)− D̃(t)p0(x, t)− D
˙̂D(t)q0(x, t)

−Dθ̃ (t)Tp(x, t)− D ˙̂θ(t)Tq(x, t) (45)
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w(1, t) = 0, (46)

where D̃(t) = D − D̂(t) is the estimation error of the delay, the
quantities

A(θ̃) =
p∑
i=1

θ̃iAi =
p∑
i=1

(θi − θ̂i(t))Ai (47)

B(θ̃) =
p∑
i=1

θ̃iBi (48)

are linear in the parameter estimation error θ̃ (t) = θ − θ̂ (t), and

p0(x, t) = K(θ̂)eA(θ̂)D̂(t)x((A+ BK)(θ̂)X̃(t)+ B(θ̂)w(0, t)) (49)

q0(x, t) =
∫ x

0
K(θ̂)

(
I + A(θ̂)D̂(t)(x− y)

)
eA(θ̂)D̂(t)(x−y)

× B(θ̂)e(y, t)dy+ K(θ̂)A(θ̂)xeA(θ̂)D̂(t)xX̃(t) (50)

=

∫ x

0
w(y, t)

[
K(θ̂)

(
I + A(θ̂)D̂(t)(x− y)

)
× eA(θ̂)D̂(t)(x−y)B(θ̂)+ D̂(t)

∫ x

y
K(θ̂)

×

(
I + A(θ̂)D̂(t)(x− ξ)

)
eA(θ̂)D̂(t)(x−ξ)BK(θ̂)

× e(A+BK)(θ̂)D̂(t)(ξ−y)B(θ̂)dξ
]
dy+

[
KA(θ̂)x

× eA(θ̂)D̂(t)x +
∫ x

0
K(θ̂)

(
I + A(θ̂)D̂(t)(x− y)

)
× eA(θ̂)D̂(t)(x−y)BK(θ̂)e(A+BK)(θ̂)D̂(t)ydy

]
X̃(t). (51)

The vector-valued functions q(x, t) and p(x, t) are defined through
their coefficients as follows, for 1 ≤ i ≤ p,

pi(x, t) = K(θ̂)eA(θ̂)D̂(t)x(AiX(t)+ Biu(0, t)) (52)

= K(θ̂)eA(θ̂)D̂(t)x((Ai + BiK(θ̂))X̃(t)+ Biw(0, t)

+ AiX r(t, θ̂ )+ Biur(0, t, θ̂ )) (53)

qi(x, t) = D̂(t)
∫ x

0

([
∂K

∂θ̂i
(θ̂)+ K(θ̂)AiD̂(t)(x− y)

]
× eA(θ̂)D̂(t)(x−y)B(θ̂)+ K(θ̂)eA(θ̂)D̂(t)(x−y)Bi

)
× e(y, t)dy+

(
∂K

∂θ̂i
+ K(θ̂)AiD̂(t)x

)
eA(θ̂)D̂(t)x

× X̃(t)− K(θ̂)eA(θ̂)D̂(t)x
∂X r

∂θ̂i
(t, θ̂ )+

∂ur

∂θ̂i
(x, t, θ̂ )

− D̂(t)
∫ x

0
K(θ̂)eA(θ̂)D̂(t)(x−y)B(θ̂)

×
∂ur

∂θ̂i
(y, t, θ̂ )dy (54)

= D̂(t)
∫ x

0
w(y, t)

[(
∂K

∂θ̂i
(θ̂)+ K(θ̂)AiD̂(t)(x− y)

)
× eA(θ̂)D̂(t)(x−y)B(θ̂)+ K(θ̂)eA(θ̂)D̂(t)(x−y)Bi

+ D̂(t)
∫ x

y

((
∂K

∂θ̂i
(θ̂)+ K(θ̂)AiD̂(t)(x− ξ)

)
× eA(θ̂)D̂(t)(x−ξ)B(θ̂)+ K(θ̂)eA(θ̂)D̂(t)(x−ξ)Bi

)
× K(θ̂)e(A+BK)(θ̂)D̂(t)(ξ−y)B(θ̂)dξ

]
dy
+

[(
∂K

∂θ̂i
(θ̂)+ K(θ̂)AiD̂(t)x

)
eA(θ̂)D̂(t)x

+ D̂(t)
∫ x

0

[(
∂K

∂θ̂i
(θ̂)+ K(θ̂)AiD̂(t)(x− y)

)
× eA(θ̂)D̂(t)(x−y)B(θ̂)+ K(θ̂)eA(θ̂)D̂(t)(x−y)Bi

]
× K(θ̂)e(A+BK)(θ̂)D̂(t)ydy

]
X̃(t)

− K(θ̂)eA(θ̂)D̂(t)x
∂X r

∂θ̂i
(t, θ̂ )+

∂ur

∂θ̂i
(x, t, θ̂ )

− D̂(t)
∫ x

0
K(θ̂)eA(θ̂)D̂(x−y)B(θ̂)

∂ur

∂θ̂i
(y, t, θ̂ )dy. (55)

Now, we define the following Lyapunov function candidate

V (t) = D log(N(t))+
b
γ1
D̃(t)2 +

bD
γ2
θ̃ (t)Tθ̃ (t), (56)

where

N(t) = 1+ X̃(t)TP(θ̂)X̃(t)+ b
∫ 1

0
(1+ x)w(x, t)2dx. (57)

Taking a time derivative of V (t), we obtain

V̇ (t) = −
2b
γ1
D̃(t)( ˙̂D(t)− γ1τD(t))

−
2bD
γ2
θ̃ (t)T( ˙̂θ(t)− γ2τθ (t))

+
D
N(t)

(
p∑
i=1

˙̂
θi(t)

(
X̃(t)T

∂P

∂θ̂i
(θ̂)X̃(t)

− X̃(t)TP(θ̂)
∂X r

∂θ̂i
(t, θ̂ )

)
− X̃(t)TQ (θ̂)X̃(t)

+ 2X̃(t)TP(θ̂)B(θ̂)w(0, t)−
b
D
‖w‖2 −

b
D
w(0, t)2

− 2b ˙̂D(t)
∫ 1

0
(1+ x)w(x, t)q0(x, t)dx

− 2b ˙̂θ(t)T
∫ 1

0
(1+ x)w(x, t)q(x, t)dx

)
, (58)

wherewehave used an integration byparts. Using the assumptions
that D̂(0) ∈]0; D̄] and θ̂ (0) ∈ Π , the update laws (32)–(33), and the
properties of the projection operator, we get

V̇ (t) ≤
D
N(t)

(
p∑
i=1

˙̂
θi(t)

(
X̃(t)T

∂P

∂θ̂i
(θ̂)X̃(t)

− X̃(t)TP(θ̂)
∂X r

∂θ̂i
(t, θ̂ )

)
− λmin(Q (θ̂))|X̃(t)|2

+ 2X̃(t)TP(θ̂)B(θ̂)w(0, t)−
b
D
‖w‖2 −

b
D
w(0, t)2

−2b ˙̂D(t)
∫ 1

0
(1+ x)w(x, t)q0(x, t)dx

− 2b ˙̂θ(t)T
∫ 1

0
(1+ x)w(x, t)q(x, t)dx

)
, (59)

and, substituting the expressions of (32) and (33) and using (39)
with the Young inequality, we obtain

V̇ (t) ≤ −
D
2N(t)

(
λmin(Q )|X̃ |2 +

b
D
‖w‖2 + 2

b
D
w(0, t)2

)
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+ 2Dbγ1

∫ 1
0 (1+ x)|w(x, t)||p0(x, t)|dx

N(t)

×

∫ 1
0 (1+ x)|w(x)||q0(x, t)|dx

N(t)

+Dγ2
p∑
i=1

(∫ 1
0 (1+ x)|w(x, t)||pi(x, t)|dx

N(t)

+2|X̃(t)TP(θ̂)/b||AiX(t)+ Biu(0, t)|
N(t)

)

×
1
N(t)

(∣∣∣∣X̃(t)T ∂P
∂θ̂i
(θ̂)X̃(t)

∣∣∣∣+ ∣∣∣∣X̃(t)TP(θ̂)
×
∂X r

∂θ̂i
(t, θ̂ )

∣∣∣∣+ 2b ∫ 1

0
(1+ x)|w(x, t)||qi(x, t)|dx

)
. (60)

Fuhermore, each signal depending on θ̂ , namely A, B, K , P, ∂P/∂θ̂i,
∂X r/∂θ̂i and ∂ur/∂θ̂i, is given as continuous in θ̂ . Since θ̂ remains
in Π , a closed and bounded subset of Rp, each signal is bounded
in terms of θ̂ and admits a finite upper bound. We denote MA =
supθ̂∈Π |A(θ̂)| and define MP ,MB,MK ,MA+BK ,M∂K/∂θ̂ similarly.
Therefore, using Cauchy–Schwartz and Young inequalities, along
with (49), (50), (52) and (54), we get∫ 1

0
(1+ x)|w(x, t)||p0(x, t)|dx

≤ M0(|X̃(t)|2 + ‖w(t)‖2 + w(0, t)2) (61)∫ 1

0
(1+ x)|w(x, t)||q0(x, t)|dx ≤ M0(|X̃(t)|2 + ‖w(t)‖2) (62)

×

(∫ 1

0
(1+ x)|w(x, t)||pi(x, t)|dx+ 2|X̃(t)TP(θ̂)/b|

× |AiX(t)+ Biu(0, t)|
)

≤ Mi(|X̃(t)|2 + ‖w(t)‖2 + w(0, t)2 + ‖w(t)‖) (63)

×

∫ 1

0
(1+ x)|w(x, t)||qi(x, t)|dx

≤ Mi(|X̃(t)|2 + ‖w(t)‖2 + ‖w(t)‖), (64)
whereM0 andMi (1 ≤ i ≤ p) are sufficiently large constants given
by
M0 = MK max

{
MA+BK +MA, 2MK ((1+MAD̄)

× (MB +MBMK (1+ D̄))+MA)
}
e(MA+MA+BK )D̄ (65)

Mi = max {|Ai| + |Bi|MK + |Bi| + 2MP/b,

2 sup
(t,θ̂ )∈R×Π

(|Ai||X r(t, θ̂ )| + |Bi||ur(0, t, θ̂ )|),

2MK sup
(t,θ̂ )∈R×Π

∣∣∣∣∂X r
∂θ̂

(t, θ̂ )
∣∣∣∣+ 2 sup

(t,θ̂ )∈R×Π

∣∣∣∣∂ur
∂θ̂
(t, θ̂ )

∣∣∣∣
× (1+ D̂MKMB),

((
M∂K/∂θ̂ +MK |Ai|D̄

)
MB + |Ai|MK

)
× (2D̄+ 2D̄MKMB +MK )

}
e(MA+MA+BK )D̄. (66)

Consequently, if we define

M ′P = max1≤i≤p
sup
θ̂∈Π

∣∣∣∣∣∂P(θ̂)∂θ̂i

∣∣∣∣∣ (67)

Mr = max
1≤i≤p

sup
θ̂∈Π,t≥0

∣∣∣∣∣∂X r(t, θ̂ )∂θ̂i

∣∣∣∣∣ (68)
using (61)–(64) in (60), we obtain

V̇ (t) ≤ −
D
2N(t)

(
λmin(Q )|X̃ |2 +

b
D
‖w‖2 + 2

b
D
w(0, t)2

)
+ 2Dbγ1M20

|X̃(t)|2 + ‖w(t)‖2 + w(0, t)2

N(t)

×
|X̃(t)|2 + ‖w(t)‖2

N(t)
+ Dγ2

p∑
i=1

Mi
N(t)

(
|X̃(t)|2 + ‖w(t)‖2

+w(0, t)2 + ‖w(t)‖
) 1
N(t)

(
M ′P |X̃(t)|

2
+Mr |P̄||X̃(t)|

+ 2bMi(|X̃(t)|2 + ‖w(t)‖2 + ‖w(t)‖)
)
. (69)

Bounding the cubic and quadric terms with the help of N(t), we
arrive at

V̇ (t) ≤ −
D
2N(t)

(
λ|X̃(t)|2 +

b
D
‖w(t)‖2 + 2

b
D
w(0, t)2

)
+
2Dbγ1M20
min

{
λ, b

} |X̃(t)|2 + ‖w(t)‖2 + w(0, t)2
N(t)

+Dγ2
p∑
i=1

Mi

(
M ′P

(
1
λ
+

1
2min {1, b}

)

+MPMr

(
1
2
+

1
2min

{
1, λ

})

+ 2bMi

(
1

min
{
λ, b

} + 1
2min {1, b}

+ 1

))

×
|X̃(t)|2 + ‖w(t)‖2 + w(0, t)2

N(t)
. (70)

Defining the following constant,

m =
2max

{
bM20 ,

p∑
i=1
Mi(M ′P +MPMr + 3bMi)

}
min

{
1, λ, b

} (71)

we finally obtain

V̇ (t) ≤ −
D
2N(t)

(
min

{
λ,
b
D

}
− 2(γ1 + γ2)m

)
× (|X̃(t)|2 + ‖w(t)‖2 + w(0, t)2). (72)

Consequently, by choosing

γ ∗ =
min

{
λ, b/D

}
4bm

(73)

and (γ1, γ2) ∈ [0; γ ∗[2, we make V̇ (t) negative semidefinite and
hence

V (t) ≤ V (0), ∀t ≥ 0. (74)

Starting from this result, we now prove the results stated in
Theorem 1. From the transformation (38) and its inverse (43), we
obtain these two inequalities

‖w(t)‖2 ≤ r1‖e(t)‖2 + r2|X̃(t)|2 (75)

‖e(t)‖2 ≤ s1‖w(t)‖2 + s2|X̃(t)|2, (76)

where r1, r2, s1, s2 are sufficiently large positive constants given by

r1 = 3
(
1+ D̄2M2Ke

2MA+BK D̄M2B
)

(77)

r2 = 3M2Ke
2MA+BK D̄ (78)
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s1 = 3
(
1+ D̄2M2Ke

2MAD̄M2B
)

(79)

s2 = 3M2Ke
2MAD̄. (80)

Furthermore, from (56) and (76), it follows that

D̃(t)2 + θ̃ (t)Tθ̃ (t) ≤
γ1 + γ2

b
V (t) (81)

‖X̃(t)‖2 ≤
1
λ
(eV (t)/D − 1) (82)

‖e(t)‖ ≤
s1
b
(eV (t)/D − 1)+ s2‖X̃(t)‖. (83)

Thus, from the definition of Υ (t), it is easy to show that

Υ (t) ≤
(
1+ s2
λ
+
s1
b
+
(γ1 + γ2)D

b

)
(eV (t)/D − 1). (84)

Besides, using (75), we also obtain

V (0) ≤
(
D(λ̄+ s2b+ 2s1b)+ b

(
1
γ1
+
1
γ2

))
Υ (0). (85)

Finally, if we define

R =
1+ s2
λ
+
s1
b
+
(γ1 + γ2)D

b
(86)

ρ = λ̄+ s2b+ 2s1b+
b
D

(
1
γ1
+
1
γ2

)
, (87)

we obtain the global stability result given in Theorem 1.
We now prove tracking. From (74), we obtain the uniform

boundedness of ‖X̃(t)‖, ‖w(t)‖, D̂(t) and ‖θ̂ (t)‖. From (43), we
obtain that ‖e(t)‖ is also uniformly bounded in time. From (31),
we get the uniformly boundedness of U(t) and consequently of
Ũ(t) for t ≥ 0. Thus, we get that u(0, t) and e(0, t) are uniformly
bounded for t ≥ D. Besides, from (33) and (52), we obtain the
uniform boundedness of ‖ ˙̂θ(t)‖ for t ≥ D. Finally, with (44), we
obtain that dX̃(t)2/dt is uniformly bounded for t ≥ D. As |X̃(t)| is
square integrable, from (72), we conclude from Barbalat’s lemma
that X̃(t)→ 0 when t →∞.
Besides, from (72), we get the square integrability of ‖w(t)‖.

From (76), we obtain the square integrability of ‖e(t)‖. Conse-
quently, with (31), we obtain the square integrability of Ũ(t). Fur-
thermore,

dŨ(t)2

dt
= 2Ũ(t)

(
K(θ̂)eA(θ̂)D̂(t) ˙̃X(t)+ ˙̂D(t)G0(t)

+

p∑
i=1

˙̂
θi(t)Gi(t)+

D̂
D
H(t)

)
(88)

with

G0(t) = K(θ̂)
[
A(θ̂)eA(θ̂)D̂(t)X̃(t)+

∫ 1

0
(I + A(θ̂)D̂(t)

× (1− y))eA(θ̂)D̂(t)(1−y)B(θ̂)e(y, t)dy
]

(89)

Gi(t) =
∂K

∂θ̂
(θ̂ )

[
eA(θ̂)D̂(t)X̃(t)+ D̂(t)

∫ 1

0
eA(θ̂)D̂(t)(1−y)

× B(θ̂)e(y, t)dy
]
+ K(θ̂)

[
AiD̂(t)eA(θ̂)D̂(t)X̃(t)

+ D̂(t)
∫ 1

0

[
AiD̂(t)(1− y)eAD̂(t)(1−y)B(θ̂)
+ eAD̂(t)(1−y)Bi
]
e(y, t)dy

]
(90)

H(t) = K(θ̂)
[
B(θ̂)Ũ(t)− eA(θ̂)D̂(t)B(θ̂)e(0, t)

+

∫ 1

0
A(θ̂)D̂(t)eA(θ̂)D̂(t)(1−y)B(θ̂)e(y, t)dy

]
. (91)

The signals ˙̂D, ˙̂θ1, . . . ,
˙̂
θp are uniformly bounded over t ≥ 0,

according to (32)–(33). By using the uniform boundedness of
X̃(t), ˙̃X(t), ‖e(t)‖, Ũ(t) over t ≥ 0 and of e(0, t) for t ≥ D and
the uniform boundedness of all the signals which are functions of
θ̂ for t ≥ 0, we obtain the uniform boundedness of dŨ(t)2/dt over
t ≥ D. Then, with Barbalat’s lemma, we conclude that Ũ(t) → 0
when t →∞.

6. Conclusions

In this paper we presented a result on global adaptive tracking
for ODEs with unknown parameters and long unknown actuator
delays, with full state feedback. The control design employs
predictor feedback, modified from stabilization to tracking,
whereas adaptation employs our relatively novel Lyapunov update
law design with normalization. A simulation example with a
second order linear plant illustrates the effectiveness of the design.
Future work should focus on systems with simultaneous state

and input delay. The non-adaptive design (Jankovic, 2008) may be
a good starting point for an interesting class of systems, and the clf
tools (Karafyllis & Jiang, 2008) for systems with state delays may
be instrumental.
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