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Abstract: At the light of a simple tutorial example, this paper discusses the merits of a recently
introduced technique to control a class of systems with a delay depending on the past values of the
control variables. The convergence proof of the proposed control strategy is obtained by a boundedness
analysis of a class of delay differential equation, inspired by the Halanay inequality. The relations of the
proposed technique with previous works from the literature on predictor-based controllers are discussed.
The treated example is representative of a wide class of systems often observed in process control and
distributed parameter systems.

1. INTRODUCTION

Numerous industrial applications involve a physical dead-time
which reveals troublesome in the design and tuning of output
feedback control laws, needed to achieve the still increasing
expectations of dynamic performances. The source of this dead-
time is that the sensors and the actuators are often not co-
located. Such processes may involve transportation of material,
such as gas in automotive engine (Bresch-Pietri et al. [2010]),
liquid in mixing processes for chemical reactors (Harmand and
Dochain [2005]) and heater collector plant (Sbarciog et al.
[2008]), or blending (Chèbre et al. [2010]) and batch processes
(Petit et al. [1998]). Very importantly, the lag directly depends
on the manipulated variable. Therefore, the considered delay is
inherently input-dependent and, then, non-linear.
A prime and very simple example of this type of non-linear
dynamical systems is the shower system, or bath depicted in
Fig. 1, for which a temperature regulation is considered 1 . In
this example, the involved liquid holdups contained in the pipes
are directly correlated to the history of the input flow rates.
The holdup has a “group” velocity (due to the incompressible
nature of the flow) which depends on the current value of
the control. The temperature of the holdup is not spatially
uniform, as it depends on the past values of the control which
may not have been constant over a sufficiently long past. Due
to its relative simplicity and its occurrence in everyday life,
this example is often used to introduce time-delay systems in
lectures and textbooks, like in Zhong [2006], and to illustrate
some corresponding control challenges. Surprisingly, as similar
problems involving input-varying delay, such as the crushing-
mill problem presented by Richard [2003], it seems that this
problem has never been studied theoretically.
More generally, it seems that the stabilization problem of a non-
linear process, with input-dependent time-delay in the input, of
1 Of course, for this application, an open-loop result of asymptotic conver-
gence can be straightforwardly obtained. Yet, closed-loop controllers lead to
substantial transient improvements, which may be crucial in real-life applica-
tions.

type ẋ = f (x,u(t−D(u)))
has never been theoretically considered. A classically proposed
approach in such situations is to treat the delay dependence on
the control by robustness, i.e. by neglecting this dependence as
D(u) ≈ D(t) or even D(u) ≈ D and by requiring the controller
to be able to deal with a certain level of model error.

Robust stability of systems with time-varying delay in the input
has been widely studied lately : in Han and Gu [2001], He
et al. [2007], Jiang and Han [2008] or Liu and Hu [2011],
“memoryless” controllers are employed at the expense of sub-
stantial Linear Matrix Inequalities (LMIs) to check. On the
other hand, predictor-based strategies have been proposed to
improve closed-loop dynamic performance,(see Smith [1959],
Artstein [1982], Manitius and Olbrot [2002]). Such techniques,
which are widely used for a constant input time-delay (see for
instance Jankovic [2008], Krstic [2008b], Mondié and Michiels
[2003], Moon et al. [2001] or Gu and Niculescu [2003] and
Richard [2003] and the reference therein) are less popular for
time-varying ones. Yet, in Nihtila [1991] or, more recently, in
Krstic [2009], a time-varying delay version of predictor-based
control has been proposed. To compensate the input delay, this
prediction is calculated over a time window of which length
matches the value of the future delay 2 . In other words, it is
required to be able to predict the future variations of the de-
lay, which is not always practically achievable when the delay
depends on the input.

For this reason, in this paper, although we use a prediction
technique, we do not aim at exactly compensating the delay.
We blend the previously described techniques and propose a
robust compensation approach as has been done recently in Yue
and Han [2005] for example. We follow the overture proposed
in Krstic [2008a] and Krstic [2009] to analyze the stability of
linear input time-delay systems (and which have been devel-

2 In details, defining the delay operator φ(t) = t−D(t) and assuming that its
inverse is well-defined, exact delay-compensation is obtained with the feedback
law U(t) = KXpred(φ−1(t)).
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oped in Bresch-Pietri et al. [To appear] and in Bresch-Pietri
and Krstic [2009] to address uncertainties to constant input
time-delays in various contexts). Here, we extend these tools to
linear systems with time-varying delay in the input. To address
the particular problem under consideration, we explicitly relate
the obtained result with the regulation of the considered class
of input-varying delay processes. Technically, we guarantee
the boundedness of the delay variations by relating it to the
boundedness of the control tracking error, over successive time
windows, which is in turn achieved using a modified Halanay
inequality. To the best of the authors knowledge, this relation
between prediction-based control law and input-dependency of
the delay has never been studied. This is the main contribution
of the paper.

The paper is organized as follows. In Section 2, we briefly
describe the mixing process under consideration, before design-
ing in Section 3 a prediction-based controller using a tailored
change of time scale. After having presented this controller,
we focus on Section 4 on its conditions of realization invoking
Halanay boundedness results. Finally, a proof of convergence of
the proposed controller for linear time-varying delay systems is
provided in Appendix.

2. PROBLEM STATEMENT

Consider the bath system represented in Fig. 1, where the
average bath temperature Tf is the result of a mixing between a
cold water source (flow rate u1 and temperature T1) and a warm
one (u2 and T2). For comfort purposes, the user of the bath
wishes to obtain a desired temperature Tre f , preferably without
over- or under-shoots, and as fast as possible (namely, close to
the minimum reaching time introduced by the transport delay
through the pipe).

For sake of simplicity, we assume here that the change of the
faucet position is instantaneous and that the bath volume V is
constant. Further, we assume that the position of the cold water
faucet is fixed. Without loss of generality, u1 = 1, T1 = 0, T2 = 1,
Tre f ∈ [0,1[, V = 1 and we denote u = u2 ∈ [0,1]. Assuming
that the position of the warm water faucet is directly correlated
to the flow rate through static relations, u is then considered as
the input variable. Finally, we assume that the bath temperature
Tf is available for measurement.

2.1 Balance equations

Assuming that the mixing at the node is instantaneous, the
punctual temperature at this node can simply be expressed as

Tmoy(t) =
u(t)

1+u(t)
(1)

We neglect the heat losses during the flow transport from the
node to the pipe output, namely

Tout(t) =Tmoy(t−D(t)) (2)
where D(t) accounts for the varying transport delay implicitly
defined by

VP =
∫ t

t−D(t)
(1+u(s))ds (3)

with VP the pipe volume. Further, a heat balance yields, using
(2) and the fact that the bath volume V = 1 is constant,

d
dt

(Tf ) =(1+u(t))
[
−Tf (t)+Tmoy(t−D(t))

]
(4)

u1 = 1, T1 = 0

Warm water

Cold water

Tf

Tmoy

Tout

V = 1

control

sensoru2(t) = u(t), T2 = 1

Fig. 1. The studied shower system.

2.2 Control objective

The control objective is to have system (4) track the given
temperature set-point Tre f as fast as possible, taking into ac-
count the above constraints. To reach this goal, we develop a
prediction-based control law taking advantage of the knowl-
edge of the implicit delay variation law (3).

3. CONTROL DESIGN

3.1 Alternative system representation

To design an explicit prediction-based feedback law, we first
introduce the following change of time

τ
de f
= h(t) =

1
1+u

∫ t

0
(1+u(s))ds+ τ0 (5)

where u is a normalization factor chosen as u = Tre f
1−Tre f

and
where τ0 ≥ 0 is a given constant. This leads to the alternative
linear system

dX
dτ

(τ) =(1+u) [−X(τ)+Tmoy(τ−D2(τ))] (6)

where the alternative system state is defined as X(τ) = Tf (t)
and a new delay has been introduced as

D2(τ) = τ− t +D(t) = τ−h−1(τ)+D(h−1(τ)) (7)

In this new time scale 3 , (6) is a linear input-delay system
with constant parameters. Rewriting the alternative delay as
D2(h(t)) = h(t)−t +D(t) and considering both (3) and (5), one
can observe that this expression is still input-dependent, but in
a much more complex way. The well-posedness of (5)-(7) is
proved in Bresch-Pietri et al. [2012].

3.2 Control design for the alternative system (6)

We now formulate the following theorem, a proof of which is
provided in Appendix.

Theorem 1. Consider the closed-loop system
Ẋ(t) =AX(t)+BU(t−D(t)) (8a)

U(t) =U r−KX r +K
[

eAD(t)X(t)+
∫ t

t−D(t)
eA(t−s)BU(s)ds

]
(8b)

where X ∈ Rn, U is scalar, the pair (A,B) is controllable, K is
chosen such that A + BK is Hurwitz, (X r,U r) is a given equi-
3 A different constant scale factor could be introduced in (5) to simplify the
expression of (6) at the expense of later complexity in the analysis of closed-
loop behavior.
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librium set-point and D : R+ → [D,D] is a time-differentiable
function. Then, there exists δ ∗ ∈]0;1[ such that, provided

∀t ≥ 0 , |Ḋ(t)|< δ
∗ , (9)

the plant (8a) exponentially converges to the equilibrium X r.

Before studying the application of this theorem to our “shower”,
we wish to comment it. Control law (8b) is a predictor directly
inspired by the constant delay case, forecasting values of the
state over a time window of varying length D(t). Of course,
exact compensation of the delay is not achieved with this con-
troller 4 and equation (9) can be interpreted as a condition for
robust compensation achievement. Namely, if the delay varies
sufficiently slowly, its current value D(t) used for prediction
can be expected to be close enough to its future values, and the
corresponding prediction will be accurate enough to ensure the
stabilization of the plant.

Interestingly, the exact same condition is stated in Yue and
Han [2005], where the delay is also assumed to be time-
differentiable. Yet, the approach designed in Yue and Han
[2005] differs from ours in the way that a constant average delay
value is used for control 5 , which should naturally result into
performance losses.

3.3 Control law for the original plant

Theorem 2. Consider the closed-loop system consisting of the
plant (4), with the input-delay defined through (1)-(3), and the
control law

u(t) =Sat[0,1]

{
Tmoy(t)

1−Tmoy(t)

}
(10)

Tmoy(t) =(1+ k)Tre f − k
[
e−(1+u)D2(t)Tf (h−1(t))

+(1+u)
∫ t

t−D2(t)
e−(1+u)(t−s)Tmoy(s)ds

]
(11)

D2(t) =t−h−1(t)+D(h−1(t)) (12)
where the function h has been defined in (5) and Sat[0,1] repre-
sents the saturation operator. There exists k∗ ∈R∗+, potentially
depending on the initial condition and the input past on a time
window of finite length u0, such that, for k ∈ [0,k∗[,

Tf (t) →
t→∞

Tre f

This result is not surprising : Theorem 1 requires the delay to
vary sufficiently slowly, while, on the other hand, the delay
variations implicitly depend on the control input, variations
which aggressiveness is scaled by the gain k. Then, restricting
the input variations by choosing the feedback gain sufficiently
small seems like a natural solution. Further, as the “shower”
under consideration is stable, it is possible to choose k as small
as desired and in particular to ensure (9).

An important point for implementability is the causality of the
control law (10), as the inverse transformation h−1 is employed.
This point can still be guaranteed (see Bresch-Pietri et al.
4 To do so, one would need to consider a time window of which length would
match exactly the value of the future delay, as it is made in Krstic [2009].
In details, defining the delay operator φ(t) = t −D(t) and assuming that its
inverse exists and is available, exact delay-compensation is obtained with the
feedback law U(t) = KX(φ−1(t)). Yet, this requires to be able to predict the
future variation of the delay via φ−1(t), which is not practically achievable for
an input-varying delay.
5 More precisely, the control law is designed after a reduction model using this
average value.

[2012] for details). For strict implementability, an expression
of the bound δ ∗ is provided in Appendix. Nevertheless, as this
formulation is obtained based on a Lyapunov analysis, it turns
out to be quite conservative and brings little help in practice.

The interested reader may refer to the companion paper Bresch-
Pietri et al. [2012] for simulation results highlighting these
points, and emphasizes the interest of this control law by
comparison with a simple proportional controller.

We now detail the proof of Theorem 2 .
4. PROOF OF THEOREM 2 - HALANAY INEQUALITY

As the alternative plant (6) directly matches the framework of
Theorem 1 and as the prediction-based control law (11) is a
direct application of (8b) to the considered case, the condition
(9) is sufficient to obtain the desired convergence. Indeed, if this
condition is fulfilled, applying Theorem 1, one can ensure that
the system state in (6) asymptotically converges to Tre f . As the
diffeomorphism h is unbounded as its argument goes to infinity,
this also involves the asymptotic convergence of Tf . Here, this
condition can be written as∣∣∣∣∂D2

∂τ
(τ)

∣∣∣∣ < δ
∗ (13)

In this section, we focus on a general manner to guarantee this
condition 6 . Some misleading notations are given in Appendix.

4.1 Reformulation of (13)

First, from (7) and (5), one can easily obtain an analytic
expression of this partial derivative

∂D2

∂τ
(τ) =

∂D2

∂τ
(h(t)) = 1− [1− Ḋ(t)]

1+u
1+u(t)

Further, taking a time-derivative of the implicit equation (3),
one gets,

1− Ḋ(t) =
1+u(t)

1+u(t−D(t))
and then, substituting,∣∣∣∣∂D2

∂τ
(τ)

∣∣∣∣ < δ
∗⇔

∣∣∣∣1− 1+u
1+u(t−D(t))

∣∣∣∣ < δ
∗

⇔ 1+u
1+δ ∗

< 1+u(t−D(t)) <
1+u

1−δ ∗

⇔ 1−δ ∗

1+u
< 1−Tmoy(t−D(t)) <

1+δ ∗

1+u
Finally, exploiting the equilibrium relation between u and Tre f ,
this condition can be rewritten as the inequality bearing on the
input∣∣Tmoy(t−D(t))−Tre f

∣∣ < δ
∗ 1

1+u
= δ

∗(1−Tre f ) (14)

As a result, the inequality (13) bearing on the delay time-
derivative is equivalent to the previous one on the input, which
is consistent with the input-dependency on the delay. To study
this last inequality, we now introduce some intermediate results.

4.2 Halanay inequality and related boundedness results

We first recall the following result (Halanay [1966], Ivanov
et al. [2002]) 7 .
6 which has been guaranteed in Bresch-Pietri et al. [2012] accounting for a
particularity of this system which is to presend only bounded variables (flows
mainly).
7 More precisely, in Halanay [1966], this result is stated for a > b > 0.
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Lemma 1. (Halanay inequality) Consider a positive continuous
real-value function x such that, for some t0 ∈R,

ẋ(t)≤−ax(t)+bmaxxt , t ≥ t0
with a≥ b≥ 0 and where the notation xt : s∈ [−D,0] 7→ x(t +s)
has been used. Then there exists γ ≥ 0 such that

∀t ≥ t0 , x(t)≤maxxt0e−γ(t−t0)

A direct application of this result is the lemma below.

Lemma 2. Consider a delay differential equation of the form{
ẋ(t) + ax(t)+bh(t,xt) = 0 , t ≥ t0

xt0 = φ ∈ C 0([−D,0]) (15)

where the continuous functional h satisfies the sup-norm rela-
tion

|h(t,xt)| ≤max |xt |
Then if a ≥ b ≥ 0, there exists γ ≥ 0 (γ = 0 if a = b) such that
every solution of (15) satisfies

∀t ≥ t0 , |x(t)| ≤max |xt0 |e
−γ(t−t0) (16)

Proof Consider x a non-trivial continuous solution 8 of (15)
which does satisfy the inequality

d|x(t)|
dt

+a|x(t)| ≤ bmax |xt | provided |x(t)| 6= 0

Following the own proof of Halanay [1966], define y = ke−γ(t−t0),
with k > 0 and γ chosen such that y satisfies the corresponding
differential equation 9

ẏ(t) =−ay(t)+bmaxyt , t ≥ t0 and yt0 = k
Now, we define the difference z = y− |x(t)| which is a con-
tinuous function and we are interested in its sign change. We
choose k > max |xt0 | to ensure that z(t0) > 0 for t ∈ [t0−D, t0].
The function z being continuous, we define

t1 = inf{t > t0|z(t) = 0} ∈R∪{∞}
Assume that t1 < ∞. Then |x(t1)| = y(t1) > 0 by the analytic
expression of y and, by continuity, there exists an open set
]a1,b1[ such that t1 ∈]a1,b1[ and |x(t)| > 0 for t ∈]a1,b1[.
Consequently, z is continuously differentiable on ]a1,b1[ and
satisfies

∀t ∈]a1,b1[ , ż(t)+az(t)≥ b(maxyt −max |xt |)
Then, ż(t1) ≥ maxyt1 −max |xt1 | > 0, by definition of t1. Yet,
one has

ż(t1) = lim
t→t−1

z(t)− z(t1)
t− t1

= lim
t→t−1

z(t)
t− t1

≤ 0 as z(t)≥ 0 on [t0, t1]

We finally conclude that t1 = ∞. Then, ∀t ≥ t0 ,z(t) > 0 and

∀ε > 0 ∀t ≥ t0 |x(t)|< (max |xt0 |+ ε)e−γ(t−t0)

which gives the result.

To match with the considered framework, we now state a local
version of the previous lemma.
Corollary 1. Consider a delay differential equation of the form{

ẋ(t) + ax(t)+bh(t,xt) = 0 , t ≥ t0
xt0 = φ ∈ C 0([−D,0]) (17)

where h is a continuous functional satisfying, on an open
neighborhood V of the origin, the sup-norm relation

∀xt : [−D̄,0] 7→V , |h(t,xt)| ≤max |xt | (18)
8 The continuity (and even more) is obtained by assuming φ smooth enough.
9 γ ≥ 0 is the unique solution on [0,∞[ of a− γ = beγD.

Then, if the initial value φ maps [−D,0] to V and if a ≥ b ≥ 0,
then there exists γ ≥ 0 (γ = 0 if a = b) such that every solution
satisfies

∀t ≥ t0 , |x(t)| ≤max |xt0 |e
−γ(t−t0) (19)

Proof The essence of the proof is similar to the one of
Lemma 2. Consider again a non trivial solution x such that
xt0 : [−D,0] 7→V , y(t)= ke−γ(t−t0) s. t. ẏ(t) =−ay(t)+bmaxyt
for t ≥ t0 and z = y − |x| with z(t0) > 0. Define again
t1 = inf{t > t0|z(t) = 0} ∈R∪{∞}. If k > max |xt0 | and k ∈V
(k always exists as V is an open set by assumption), one can
ensure that x(t) ∈ V for t ∈ [t0, t1] from the fact that y(t) ∈ V ,
for t ∈ [t0, t1]. Then, ∀t ≥ t0 z(t) > 0 and the result directly
follows.

4.3 Application to establish the boundedness of input-delay
systems with the prediction-based control law

Lemma 3. Consider a continuous real-valued f and a differen-
tiable real-valued function ψ such that

f (t) =− k
[

e−αD(t)
ψ(t)+α

∫ t

t−D(t)
e−α(t−s) f (s)ds

]
(20)

ψ̇(t) =α [−ψ(t)+ f (t−D(t))] (21)

where k > 0 and α > 0 are constant and D : [0,∞[→ [D,D](0 <
D < D̄) is a time-differentiable function such that

∀t ≥ 0 , |Ḋ(t)| ≤ β max
s∈[t−D,t]

| f (s)| (22)

If there exists t0 ∈ R s. t. ∀t ∈ [t0 − D̄, t0]| f (t)| < M/β with
M < 1 and β > 0, then

∀t ≥ t0 , | f (t)|< M/β

Proof Taking the time-derivative of (20) and using relation (21),
one can obtain that f satisfies the following delay differential
equation

ḟ (t)+α(1+ k) f (t) =−αḊ(t)
(

f (t)+ ke−αD(t) f (t−D(t))

+kα

∫ t

t−D(t)
e−α(t−s) f (s)ds

)
Then, defining a = b = α(1+ k), V = ]−M/β ,M/β [ and

h(t,xt) =
Ḋ(t)
1+ k

×[
f (t)+ k

(
e−αD(t) f (t−D(t))+α

∫ t

t−D(t)
e−α(t−s) f (s)ds

)]
one can apply Corollary 1 as, using (22),

|h(x, t)| ≤|β max | ft |
1+ k

(
1+ k

[
e−αD(t) +1− eαD(t)

])
max | ft |

≤β max | ft |2 ≤max | ft | for ft : [−D,0] 7→V

and conclude that, ∀t ≥ t0 , f (t) ∈V , i.e. ∀t ≥ t0 , f (t) < M
β

.

4.4 Proof of Theorem 2

Observing (10), we aim at using Lemma 3 with α = 1 + u,
ψ(t) = Tf (h−1(t))−Tre f and f = Tmoy−Tre f . Indeed, taking
a time-derivative of (5) evaluated at time h−1(t), one obtains
dh−1(t)

dt = 1+u
1+u(h−1(t)) and one can realize that ψ satisfies

ψ̇(t) =
dTf

dt
(h−1(t))

dh−1(t)
dt
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=
(
1+u(h−1(t))

)[
−ψ(t)+ f (h−1(t)−D(h−1(t)))

] dh−1(t)
dt

= (1+u) [−ψ(t)+ f (t−D2(t))]
Consequently, now we just need to study the alternative delay
D2(t). Taking a time-derivative of (7) and of the implicit rela-
tion (3), both evaluated at time h−1(t), one gets

Ḋ2(t) = 1− d
dt

[h−1(t)−D(h−1(t))]

= 1− 1+u
1+u(h−1(t)−D(h−1(t)))

=
Tmoy(t−D2(t))−Tre f

1−Tre f
=

f (t−D2(t))
1−Tre f

Therefore, |Ḋ2(t)| ≤ β max | ft | with β = 1
1−Tre f

> 0 and ft
defined on [−D2(t),0]. Further, the previous results can be
easily extended to the case where the delay upper bound is
time-varying and one can observe that δ ∗ < 1. Then, one
deduces from Lemma 3 that, for t ≥ t0, | f (t)|< δ ∗/β provided
| f (t0 + s)|< δ ∗/β , s ∈ [−D2(t0),0] (with D2(t0) denoting the
upper bound at time t0). Then, (14) is equivalent to the less
requiring condition

max
s∈[−D2(0),0]

|Tmoy(t)−Tre f |< δ
∗(1−Tre f )

with D2(0) = D + τ0. Finally, from (11), this condition is
fulfilled provided 0≤ k < k? with k? > 0.

5. CONCLUSION

This paper proposes a prediction-based control strategy for a
system with an input-dependent delay. This strategy uses a pro-
posed result on robust prediction-based control of time-varying
delay systems (Theorem 1) and relates it to a small-gain con-
dition (Theorem 2) to account for the delay dependence on the
input variable, through the considered integral equation mod-
eling the transport phenomenon. This relation is established by
some extensions of Halanay inequality formulating bounded-
ness properties of a class of delay differential equations.

The resulting controller can be reasonably interpreted as a
promising way to improve performance of a large amount of
industrial processes involving input-dependent delay.

Appendix A. NOTATIONS

• C 0(S) denotes the set of continuous functions on the set S
• xt refers to the function xt : s ∈ [−D,0] → x(t + s) for a

given function x

Appendix B. PROOF OF THEOREM 1

In the following, we use the Lyapunov tools introduced in
Krstic [2008a] to analyze the stability of input time-delay
systems and which are based on a backstepping transformation
of a certain actuator state defined for constant delays 10 . First,
to extend them to the time-varying delay case, we introduce the
distributed input u(x, t) = U(t + D(t)(x− 1)), x ∈ [0,1], which
enables to rewrite plant (8a) as Ẋ(t) = AX(t)+Bu(0, t)

D(t)ut(x, t) = ux(x, t)+ Ḋ(t)(x−1)ux(x, t)
u(1, t) = U(t)

10 This transformation is made to convert the plant Ẋ(t) = AX(t) + Bu(0, t),
Dut(x, t) = ux(x, t) with the boundary condition u(1, t) = U(t) into the target
system Ẋ(t) = (A+BK)X(t)+Bw(0, t), Dwt(x, t) = wx(x, t) with the boundary
condition w(1, t) = 0.

In details, the input delay is now represented as a coupling with
a transport partial differential equation (PDE) driven by the
input and where the convection speed varies both with space
and time.

Pursuing the mentioned approach, we now define the follow-
ing transformed distributed input, based on the tracking er-
ror X̃(t) = X(t)−X r and the distributed input error e(x, t) =
u(x, t)−U r,

w(x, t) =e(x, t)−D(t)K
∫ x

0
eAD(t)(x−y)Be(y, t)dy−KeAD(t)xX̃(t)

(B.1)

This Volterra integral equation of the second kind is designed
to fulfill w(1, t) = 0, compliantly with the control choice for-
mulated earlier. The error plant corresponding to (8a)-(8b) can
then be expressed as

˙̃X(t) = (A+BK)X̃(t)+Bw(0, t)
D(t)wt(x, t) = wx(x, t)− Ḋ(t)D(t)g(x, t)

w(1, t) = 0
(B.2)

where the function g is defined as

g(x, t) =
(1− x)
D(t)

ex(x, t)+KAxeAD(t)xX̃(t)

+K
∫ x

0
eAD(t)(x−y)(I +AD(t)(x− y))Be(y, t)dy

+K
∫ x

0
eAD(t)(x−y)B(y−1)ex(y, t)dy

For the Lyapunov analysis below, we also need the governing
equation of the spatial derivative of the transformed distributed
input wx

D(t)wxt(x, t) =wxx(x, t)− Ḋ(t)D(t)gx(x, t)
wx(1, t) =Ḋ(t)D(t)g(1, t)

We can now start the Lyapunov analysis and introduce the
following Lyapunov-Krasovski functional

V (t) =X̃(t)T PX̃(t)+b1D(t)
∫ 1

0
(1+ x)w(x, t)2dx

+b2D(t)
∫ 1

0
(1+ x)wx(x, t)2dx

where the symmetric matrix P satisfies the following Lyapunov
equation P(A+BK)+(A+BK)T P =−Q for a given symmetric
definite positive matrix Q (we denote λmin(Q) its minimum
eigenvalue). Taking a time-derivative of V , we get after some
integrations by parts and bounding

V̇ (t) =−X̃(t)T QX̃(t)+2X̃(t)T PBw(0, t)+b1
(
−w(0, t)2

−‖w(t)‖2
)

+b2

(
2wx(1, t)2−wx(0, t)2−‖ŵx(t)‖2

)
+2b1|Ḋ(t)|

∣∣∣∣D(t)
∫ 1

0
(1+ x)w(x, t)g(x, t)dx

∣∣∣∣
+2b2|Ḋ(t)|

∣∣∣∣D(t)
∫ 1

0
(1+ x)wx(x, t)gx(x, t)dx

∣∣∣∣
+ |Ḋ(t)|

(
b1

∫ 1

0
(1+ x)w(x, t)2dx+b2

∫ 1

0
(1+ x)wx(x, t)2dx

)
To bound the remaining positive terms, one can introduce the
inverse transformation of (B.1)

e(x, t) =w(x, t)+D(t)K
∫ x

0
e(A+BK)D(t)(x−y)Bw(y, t)dy

+Ke(A+BK)D(t)xX̃(t)
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and its spatial derivative to obtain the following inequalities,
using Young’s and Cauchy-Schwartz’s inequalities,

2
∣∣∣∣D(t)

∫ 1

0
(1+ x)w(x, t)g(x, t)

∣∣∣∣dx

≤M1

(
|X̃(t)|2 +‖w(t)‖2 +‖wx(t)‖2

)
2wx(1, t)2 ≤M2|Ḋ(t)|2

(
|X̃(t)|2 +‖w(t)‖2 +‖wx(t)‖2

)
2
∣∣∣∣D(t)

∫ 1

0
(1+ x)wx(x, t)gx(x, t)

∣∣∣∣dx

≤M3

(
|X̃(t)|2 +‖w(t)‖2 +‖wx(t)‖2 +wx(0, t)2

)
where M1, M2 and M3 are positive constant, the expression
of which is not provided here. Using Young’s inequality and
the previous ones and defining V0(t) = |X̃(t)|2 + ‖w(t)‖2 +
‖wx(t)‖2, it is straightforward to get

V̇ (t)≤−λmin(Q)
2

|X̃(t)|2−
(

b1−
2|PB|2

λmin(Q)

)
w(0, t)2

−b1 ‖w(t)‖2−b2 ‖wx(t)‖2−b2(1−M3|Ḋ(t)|)wx(0, t)2

+ |Ḋ(t)|(b1M1 +b2M2|Ḋ(t)|+b2M3 +2b1 +2b2)V0(t)

Consequently, choosing b1 ≥ 2|PB|2/λmin(Q) and defining

δ
∗ =min

{
min{λmin(Q)/2,b1,b2}

b1M1 +b2M2 +b2M3 +2b1 +2b2
,

1
M3

,1
}

(B.3)

we obtain the existence of a positive constant µ such that,
provided |Ḋ(t)|< δ ∗, t ≥ 0,

∀t ∈R+ , V̇ (t)≤−µV0(t)
Finally, observing that both

min{λmin(P),b1D,b2D}V0(t) = η1V0(t)≤V (t)
V (t)≤max

{
λmax(P),2b1D,2b2D

}
V0(t) = η2V0(t)

one can deduce that ∀t ≥ 0 , V0(t)≤ η2
η1

V0(0)e−
µ

η2
t
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