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Abstract— This paper addresses the trajectory tracking prob-
lem of intake burned gas rate for Spark Ignited engines. We
propose a simple linear time-varying input delay model of
this dynamics, where the delay is represented by an implicit
integral equation involving the past values of the input. We
extend some recent results from the literature to design a
novel predictor-based controller and compare the merits of
the proposed technique with the ones of previous works from
the literature. Simulation results stress the relevance of this
preliminary work and directions of future work are provided.

I. INTRODUCTION

Lately, downsizing (reduction of the engine size) has
appeared as a major way for SI engines to achieve the still
more stringent environmental requirements. Such downsized
engine can reach high levels of performance and drive-
ability, provided they are equipped with direct injection,
turbocharger and Variable Valve Timing (VVT) actuators
[21]. Such a setup is represented in Fig. 1.

On such engines, one major control issue is the prevention
of the knock phenomenon, an unwanted self-ignition of the
mixture which could appear at hight load (see [7]). One of the
considered strategies to use exhaust gas recirculation (EGR)
through a low-pressure circuit, represented in Fig. 1 : burned
gases are picked up downstream of the catalyst and mixed
with fresh air upstream of the compressor. The amount of
reintroduced burned gases is controlled by the EGR Valve.

The addition of exhaust gas into the mixture leads to an
increase of the auto-ignition delay : intermixing the incoming
air with recirculated exhaust gas dilutes the mixture with in-
ert gas, increases its specific heat capacity and consequently
lowers the peak combustion temperature. Then, the effect of
EGR is a prevention of knock effect which leads to potential
substantial improvements of combustion efficiency [?].

In the same time, during tip-outs, the presence of burned
gases in the intake manifold seriously impacts the com-
bustion process and the engine may stall. For this reason,
an accurate advanced combustion control, based on the
estimation and the control of the intake burned gas rate, is
unquestionably necessary.

Nevertheless, the relative long distance between the com-
pressor and the inlet manifold leads to a significant transport
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delay, up to several seconds. Further, this delay depends on
the gas flow rate and then on the manipulated actuator, which
considerably increases the complexity of the control task.
This may explain why this SI engine control problem has
surprisingly barely been studied in the literature 1.

In this paper, we propose to design a prediction-based
control law, accounting for this time-varying delay and its
dependency on the history of the input.

The robust stability of systems with time-varying delay
in the input have been widely studied lately : using either
a Lyapunov-Razumikhin function or a Lyapunov-Krasovskii
functional, delay-dependent stability criteria are obtained
under the form of Linear Matrix Inequalities (LMIs) [9],
[10], [14], [22]. The “memoryless” controllers employed in
such approaches are relatively easy to implement. Yet, to
improve closed-loop dynamic performance, one could prefer
to use a predictor-based control law [2], [23], [28] aiming
at compensating the delay via a distributed delay of infinite
dimension. Such techniques, which are bitterly used for a
constant input time-delay (see for instance [13], [16], [24],
[25] or [8], [27] and the reference therein) are less popular
for time-varying ones. Recently, some were developed in
such a framework in [30], where substantial LMIs have to
be checked, and in [17], where the invertibility of a certain
delay-operator is assumed.

Here, we follow the overture proposed in [15] and [17] to
analyze the stability of linear input time-delay systems. The
new techniques proposed there have been developed in [3],
[4], [5], [18] to address uncertainties toward constant input
time-delays in various automotive contexts. Here, we extend
these tools to linear systems with time-varying delay in the
input, similarly to what was done in [17], and explicitly relate
the obtained result with the regulation of the intake burned
gas rate for a turbocharged SI engine. These are the main
contributions of the paper.

The paper is organized as follows. In Section II, we
present a model of the intake burned gas rate dynamics,
expressing the considered system as a linear input-delay
systems with an input-dependent delay. Then, in Section III,
we design a prediction-based control law for such systems
and develop the corresponding convergence proof. Finally,
numerical results and directions of future work are discussed
in Section IV.

1On the contrary, numerous works focus on this problem for Diesel
engine. However, as context and challenges are substantially different, it
results into a different control framework (see [1], [29], [31] and the
reference therein for more details).
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Fig. 1. Scheme of a turbocharged SI engine equipped with direct injection,
VVA and a Low-Pressure EGR loop. The ∆P sensor located at the EGR
valve gives an indirect measurement of the EGR mass flow rate Degr (see
Appendix A).

II. MODEL DEFINITION

Consider the airpath of a turbocharged SI engine equipped
with intake throttle, waste gate, dual independent VVT
actuators and a low-pressure external gas recirculation (EGR)
loop as depicted in Fig. 1. Notations presented in Fig. 1 and
used below are summarized in Table II.

We focus on the control of the amount of externally
recirculated burned gas into the intake manifold. Such a
control is realized thanks to the EGR flow rate through the
EGR valve, Degr. As this actuator is spatially distant from
the intake manifold, it introduces a time-varying transport
delay. Assuming that the mixing into the volume downstream
the EGR valve is instantaneous (i.e. neglecting the dilution
dynamics in this volume), the burned gas rate at this point
can be expressed as

u(t) =
Degr(t)

Dair(t)+Degr(t)
(1)

where Dair is measured and Degr is directly related to
the measured differential of pressure ∆P (this relation is
described in Appendix). Further, we neglect the mixing
during the flow transport, namely, following the plug-flow
assumption,

LP =
∫ t

t−τ(t)
vgas(s)ds (2)

where LP represents the pipe length from the EGR-valve
down to the intake manifold and vgas account for the gas
speeds. Finally, the mixing dynamics into the intake manifold
can be expressed with the composition balance equation 2

ẋ(t) =α[−Daspx(t)+Dthru(t− τ(t))] (3)

where x represents the externally recirculated burned gas rate
into the intake manifold and α = rTint

PintVint
is known, as both

2This balance equation assumes that the EGR circuit is filled only with
burned gas, as the Air-Fuel Ratio is regulated to its stoichiometric value in
a SI engine.

Symbol Description Unit
Dair Air mass flow rate upstream the compressor kg/s
Degr EGR mass flow rate through the EGR valve kg/s
Dthr Mass flow rate through the throttle kg/s
Dasp Aspirated mass flow rate kg/s
Tint Intake manifold temperature K
Pint Intake manifold pressure Pa
Tdc Temperature downstream the compressor K
Pdc Pressure downstream the compressor Pa
Tatm Atmospheric temperature K
Patm Atmospheric pressure Pa
r Specific ideal gas constant J/kg/K
Ne Engine speed rpm
LP Pipe length from the EGR valve down m

to the intake manifold
θegr EGR Valve Position %
mair Aspirated air mass mg/str

TABLE I
NOTATIONS

Pint and Tint are measured by a sensor located in the intake
manifold.

A. Flow rate modeling

To estimate the flow rate quantities given in (3), the model
of aspirated air mass presented in [20] is used. In this model,
Dasp is described as a function of the engine speed Ne,
the manifold pressure Pint and the intake and exhaust VVT
actuators positions. Using the ideal gas law, this flow rate is
dynamically related to the flow rate through the throttle as

Dthr = Dasp(Ne,Pint ,VV T )+
Vint

rTint
Ṗint (4)

where r = rair = rbg is the common ideal gas constant.

B. Transport delay characterization

Equation (2) implicitly determines the transport delay
according to the gas speed along the intake line, which
is not measured in practice. Nevertheless, one can again
exploit the ideal gas equation to relate this speed to current
thermodynamical conditions and mass flow rates. In other
words, this transport delay equation can be reformulated as

VP =
∫ t

t−τ(t)

rT (s)
P(s)

(Dair(s)+Degr(s))ds

where VP is the total pipe volume and T,P the current
temperature and pressure values.

Observing the engine scheme depicted in Fig. 1, one can
divide the intake line into three main sections with three
respective transport delays :

• downstream the EGR valve to the compressor. In this
portion, atmospheric conditions are used

V3 =
∫ t

t−τ3(t)

rTatm

Patm
[Dair(s)+Degr(s)]ds (5)

• downstream the compressor to the intercooler. The
current pressure and temperature are measured

V2 =
∫ t−τ3(t)

t−τ3(t)−τ2(t)

rTdc

Pdc
[Dair(s)+Degr(s)]ds (6)
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• downstream the intercooler to the intake manifold. Clas-
sically, the temperature in this portion is assumed to
be equal to the intake manifold temperature and the
pressure to be the same than the one downstream the
compressor. Namely,

V1 =
∫ t−τ3(t)−τ2(t)

t−τ3(t)−τ2(t)−τ1(t)

rTint

Pdc
[Dair(s)+Degr(s)]ds (7)

In practice, the intermediate volumes V1, V2 and V3
are known. Then, one can calculate the delay in a very
straightforward manner, inverting one after the other (5), (6)
and finally (7), to obtain τ(t) = τ1(t)+ τ2(t)+ τ3(t), like it
is done in [26] in a process context.

This delay calculation methodology has been validated
on a reference high frequency simulator developed on a
AMESimT M platform (commonly used for control engine
purposes [12]) and presented in [19]. Fig 2 pictures a
particular example of delay variation, corresponding to a
tip-in occurring at constant engine speed (1200 rpm). For a
low torque request (before 2.25 s), the air mass flow rate
is also quite low, which results into a significant transport
delay value (around 1.35 s). During tip-in, the air mass flow
substantially increases, which results into a much lower
delay value (around 0.3 s). Fig 2 shows the accuracy of the
proposed delay modeling.

The control objective is to have system (3) to track a
smooth trajectory xr(t). To do so, we aim at developing a
prediction-based control law taking advantage of the knowl-
edge of the implicit delay variation law (5)-(7). With this aim
in view, we assume in the following that the intake burned
gas rate is measured, which is not the case in a commercial-
line engine. This point is briefly discussed in Section IV. We
now detail the design of a tailored prediction-based control
law.

III. CONTROL DESIGN FOR LINEAR TIME-VARYING
INPUT-DELAY SYSTEMS

In this section, we focus on the design of a prediction-
based control law for linear time-varying input-delay sys-
tems. Therefore, we consider in this section a linear (poten-
tially unstable) plant

Ẋ(t) =AX(t)+BU(t− τ(t)) (8)

where X ∈Rn and U is scalar. We assume that the pair (A,B)
is controllable and τ : R+ → [τ, τ̄] is a bounded and time-
differentiable function.

We also consider a time-varying reference (X r(t),U r(t))
for the corresponding delay-free system, i.e. such that

Ẋ r(t) = AX r(t)+BU r(t)

and introduce the tracking error variables
X̃(t) = X(t)−X r(t) and Ũ(t) = U(t)−U r(t + τ(t)).
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Fig. 2. Torque request transient (step from 20 to 200 Nm) for a constant
engine speed of 1200 rpm. The above plot compares, for a given input
u(t), the intake burned gas rate x (in red, dotted) with the model (1)-(3)
(in blue). The model uses the delay value pictured in the above plot and
obtained while inverting (5)-(7).

Theorem 1: Consider the closed-loop system consisting in
the plant (8) and the control law

U(t) =U r(t + τ(t))+K
[
eAτ(t)X̃(t)

+
∫ t

t−τ(t)
eA(t−s)B[U(s)−U r(s+ τ(t))]ds

]
(9)

where the vector K is chosen such that A + BK is Hurwitz.
There exists δ ∗ ∈]0,1[ such that, provided

∀t ≥ 0 , |τ̇(t)|< δ
∗ (10)

the state tracking error X̃(t) exponentially converges toward
0 when t → ∞.

Control law (9) is directly inspired by the constant delay
case, calculating the state prediction over a time window
of varying length D(t). Of course, exact compensation of
the delay is not achieved with this controller. To do so, one
would need to consider a time window of which length would
match exactly the value of the future delay, as it is made in
[17] 3. In other words, this requires to be able to predict the

3In details, defining the delay operator φ(t) = t−D(t) and assuming that
its inverse exists and is available, exact delay-compensation is obtained with
the feedback law U(t) = KX(φ−1(t)) where the prediction can be written
as X(φ−1(t)) =

[
eA(φ−1(t)−t) +

∫ φ−1(t)
t eA(φ−1(t)−s)BU(φ(s))ds

]
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future variation of the delay, which is not always practically
achievable and then implementable.

In this context, (10) can be interpreted as a condition
for robust compensation achievement. Namely, if the delay
varies sufficiently slowly, its current value D(t) used for
prediction will be close enough to its future values, and the
corresponding prediction will be accurate enough to ensure
the stabilization of the plant.

Interestingly, the exact same condition is stated in [30],
where the delay is also assumed to be time-differentiable.
Yet, the approach designed in [30] differs from ours in the
way that a constant average delay value is used for control 4,
which should naturally result into poorer performance than
the proposed one.

Finally, an expression of the bound δ ∗ is provided in the
following proof. Of course, as it results from a Lyapunov
analysis, this value is extremely conservative, as the above
simulations emphasize it. Nevertheless, it leads to the
conclusion, at least according to the Lyapunov proof, that
the faster the dynamics of the system is, the smaller this
bound will be 5. We now detail this proof.

Proof In the following, we use the Lyapunov tools in-
troduced in [15] to analyze the stability of input time-delay
systems and which are based on a backstepping transforma-
tion of a certain actuator state defined for constant delays 6.

First, to extend them to the time-varying delay case,
we introduce the distributed input u(x, t) = U(t + D(t)(x−
1)), x ∈ [0,1], which enables to rewrite plant (8) as Ẋ(t) = AX(t)+Bu(0, t)

D(t)ut(x, t) = ux(x, t)+ Ḋ(t)(x−1)ux(x, t)
u(1, t) = U(t)

In details, the input delay is now represented as a coupling
with a transport partial differential equation (PDE) driven by
the input and where the convection speed varies both with
space and time.

Further, we introduce an alternative control reference
V r(t) =U r(t +τ(t)) and define the corresponding distributed
reference vr(x, t) = V r(t + τ(t)(x− 1)). Following the men-
tioned approach, we now consider the following backstep-
ping transformation, based on the control tracking errors
e(x, t) = u(x, t)− vr(x, t),

w(x, t) =e(x, t)− τ(t)K
∫ x

0
eAτ(t)xBe(y, t)dy−KeAτ(t)xX̃(t)

(11)

This transformation enables to rewrite the error plant corre-

4More precisely, the control law is designed after a reduction model using
this average value.

5In details, the constant M1,M2 and M3 introduced below are then larger,
which results into a smaller value of δ ∗.

6This transformation is made to convert the plant Ẋ(t) = AX(t)+Bu(0, t),
τut(x, t) = ux(x, t) with the boundary condition u(1, t) = U(t) into the
target system Ẋ(t) = (A+BK)X(t)+Bw(0, t), τwt(x, t) = wx(x, t) with the
boundary condition w(1, t) = 0.

sponding to (8)-(9) as

˙̃X(t) =(A+BK)X̃(t)+Bw(0, t) (12)
τ(t)wt(x, t) =wx(x, t)− τ(t)τ̇(t) f (x, t) (13)

w(1, t) =0 (14)

where the function f can be expressed as

f (x, t) =
1− x
τ(t)

ex(x, t)+KAxeAτ(t)xX̃(t)

+K
∫ x

0
eAτ(t)(x−y)Bex(y, t)dy

+K
∫ x

0
(I +Aτ(t)(x− y))eAτ(t)(x−y)Be(y, t)dy

In the Lyapunov analysis, we also need the governing dy-
namical equation of the spatial derivative of the transformed
distributed input

τ(t)wxt(x, t) =wxx(x, t)− τ(t)τ̇(t) fx(x, t)
w(1, t) =τ(t)τ̇(t) f (1, t)

We now introduce the following Lyapunov-Krasovskii func-
tional

V (t) =X̃(t)T PX̃(t)+b1τ(t)
∫ 1

0
(1+ x)w(x, t)2dx

+b2τ(t)
∫ 1

0
(1+ x)wx(x, t)2dx (15)

where the positive symmetric matrix P satisfies the Lyapunov
equation P(A+BK)+(A+BK)T P =−Q, where Q is a given
definite positive symmetric matrix. Taking a time-derivative
of the V , one can obtain with some integrations by parts

V̇ (t) =−X̃(t)T QX̃(t)+2X̃(t)T PBw(0, t)−b1 ‖w(t)‖2

−b1w(0, t)2−b2 ‖wx(t)‖2 +2b2wx(1, t)2−b2wx(0, t)2

−2b1τ(t)τ̇(t)
∫ 1

0
(1+ x)w(x, t) f (x, t)dx

−2b2τ(t)τ̇(t)
∫ 1

0
(1+ x)wx(x, t) fx(x, t)dx

+ τ̇(t)
[

b1

∫ 1

0
(1+ x)w(x, t)2dx+b2

∫ 1

0
(1+ x)wx(x, t)2dx

]
≤− λmin(Q)

2
|X̃(t)|2−

(
b1−

2|PB|2

λmin(Q)

)
w(0, t)2

−b1 ‖w(t)‖2−b2 ‖wx(t)‖2−b2wx(0, t)2 +2b2wx(1, t)2

+2b1τ(t)|τ̇(t)|
∣∣∣∣∫ 1

0
(1+ x)w(x, t) f (x, t)dx

∣∣∣∣
+2b2τ(t)|τ̇(t)|

∣∣∣∣∫ 1

0
(1+ x)wx(x, t) fx(x, t)dx

∣∣∣∣
+2|τ̇(t)|

(
b1 ‖w(t)‖2 +b2 ‖wx(t)‖2

)
Considering the inverse transformation of (11) which satisfies
the following Volterra integral equation of the second kind

e(x, t) =w(x, t)+Ke(A+BK)τ(t)xX̃(t)

+ τ(t)K
∫ x

0
e(A+BK)τ(t)(x−y)Bw(y, t)dy
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Fig. 3. Proposed controller architecture. The low-level EGR-valve con-
troller exploits the mass-flow rate model given in Appendix.

one can obtain, using Cauchy-Schwartz and Young’s inequal-
ity, the existence of positive constants M1,M2 and M3 such
that

2wx(1, t)2

≤ M1|τ̇(t)|2
(
|X̃(t)|2 +‖w(t)‖2 +‖wx(t)‖2

)
2τ(t)

∣∣∣∣∫ 1

0
(1+ x)w(x, t) f (x, t)dx

∣∣∣∣
≤ M2

(
|X̃(t)|2 +‖w(t)‖2 +‖wx(t)‖2

)
2τ(t)

∣∣∣∣∫ 1

0
(1+ x)wx(x, t) fx(x, t)dx

∣∣∣∣
≤ M3

(
|X̃(t)|2 +‖w(t)‖2 +‖wx(t)‖2 +wx(0, t)2

)
Using these inequalities and defining V0(t) = |X̃(t)|2 +
‖w(t)‖2 +‖wx(t)‖2, on can get

V̇ (t)≤−λmin(Q)
2

|X̃(t)|2−
(

b1−
2|PB|2

λmin(Q)

)
w(0, t)2

−b1 ‖w(t)‖2−b2 ‖wx(t)‖2−b2 (1−M3|τ̇(t)|)wx(0, t)2

+ |τ̇(t)|(b2M1|τ̇(t)|+b1M2 +b2M3 +2b1 +2b2)V0(t)

Consequently, by choosing b1 > 2|PB|2/λmin(Q) and defin-
ing

δ
∗ =min

{
min{λmin(Q)/2,b1,b2}

b2M1 +B1M2 +b2M3 +2b1 +2b2
,1,

1
M3

}
(16)

we obtain the existence of a constant µ > 0 such that, for
|τ̇(t)|< δ ∗,

∀t ≥ 0 , V̇ (t)≤−µV0(t) (17)

Finally, observing that both

min{λmin(P),b1τ,b2τ}V0(t) = η1V0(t)≤V (t)
V (t)≤ max{λmax(P),2b1τ̄,2b2τ̄}V0(t) = η2V0(t)

one can deduce that

∀t ≥ 0 , V0(t)≤
η2

η1
V0(0)e−

µ

η2
t

This concludes the proof.

IV. APPLICATION TO INTAKE BURNED GAS RATE
REGULATION AND SIMULATION RESULTS

A direct application of Theorem 1 to the considered
dynamics (3) yields the following choice for the controller

Degr(t) = Dair(t)
u(t)

1−u(t)

u(t) = ur(t + τ(t))− k
[
e−αDaspτ(t)[x(t)− xr(t)]

+αDthr
∫ t

t−τ(t) e−(t−s)αDasp [u(t)−ur(s+ τ(t))]ds
]
(18)

In practice, this control law is saturated as it is realized with
the EGR-valve, which is a limited actuator 7. The controller
architecture is summarized in Fig. 3.

Fig. 4 presents simulation results corresponding to a given
operating point (constant engine speed Ne = 1200 rpm and
torque request Tq = 120 Nm), for the considered reference
intake burned gas rate depicted in the left-hand plot. The
feedback gain has been chosen as k = 0.1.

One can observe that, starting without external gas recir-
culation, i.e. with x(0) = 0, the convergence is predictably
achieved. The effect of the feedback term into (18) can be
noticed at the beginning of the simulation, as the EGR mass
flow rate overshoots aiming at decreasing the time response
of the system. After that, the regulation is mainly achieved
with the feedforward term.

Further, a few comments can be made about the achieve-
ment of the condition (10). A direct computation of the
bound δ ∗ for the considered case leads to a scale of 10−2,
which is extremely conservative and cannot be used in
practice. Nevertheless, in Fig. 4, one can observe that the
delay varies quite slowly, which is compliant with the spirit
of this condition. More in details, taking a time-derivative
of the implicit equation (2), the following expression of the
delay derivative is obtained

τ̇(t) =1−
Dair(t)+Degr(t)

Dair(t− τ)+Degr(t− τ)
(19)

Then, considering the mass flow rates pictured in Fig. 3, a
first-order approximation leads to τ̇(t)≈ 1− Dair(t)

Dair(t−τ) ≈ 0 for
the considered case. For a given operating point, expression
(19) also indicates that the achievable EGR trajectories
should not include at time t frequencies above 1/τ(t).

These considerations yield to the conclusion that, for
sufficiently slow variations of the air flow (which correspond
to slow variations of the driver torque request), the proposed
technique can be directly applied. However, the EGR tra-
jectory generation seems arduous for substantial transient
behavior, such as tip-ins. This is a direction of future work.

Finally, as the intake burned gas rate is usually unmeasured
in commercial-line engines, upcoming works will also focus

7In details, this control law is transcribed into a EGR-valve position using
the model given in Appendix A. This model exploits the measurement of the
differential of pressure ∆P given by a dedicated sensor, represented in Fig. 1.
A further study of this model also reveals that the range of achievable EGR
flow rate is mainly limited by this differential of pressure and, consequently,
depends on the considered operating point.

5722



0 2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

0.12

Time [s]

In
ta

ke
 b

u
rn

ed
 g

as
 r

at
e 

[−
]

Intake burned gas rate [−]

 

 

x
r
(t)

x(t)

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

Time [s]

F
lo

w
 r

at
es

 [
kg

/h
]

Flow rates [kg/h]

 

D_{air}
D_{egr}

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

Time [s]

E
G

R
 v

al
ve

 p
o

si
ti

o
n

 [
%

]

EGR valve position [%]

 

 

0 2 4 6 8 10 12 14 16
0.35

0.36

0.37

0.38

0.39

0.4

0.41

Time [s]

D
el

ay
 τ

 [
s]

Delay τ  [s]

 

 

Fig. 4. Simulation results for constant engine speed (Ne = 1200 rpm) and torque request (Tq = 120 Nm). The reference trajectory of intake burned gas
rate is pictured in the left-hand figure (dotted).

on the design of an estimate to feed the control law 8.

V. CONCLUSION AND PERSPECTIVES

In this paper, a novel prediction-based control law for lin-
ear systems with time-varying input delay has been designed
and applied to the trajectory tracking of the intake burned gas
rate for SI engines. Simulation validation of the proposed
model has been carried out on the AMESimT M platform and
control results highlight the merits of the proposed approach.

The next step is to validate both the proposed model
and controller on experimental test-benches. Based on the
simulation results, one can reasonably expect combustion
performance improvements.

8One promising way could be to exploit the exhaust Air-Fuel Ratio
measurement given by the lambda sensor (see Fig. 1) jointly with the history
of the injected mass of fuel and an estimation of the exhaust transport delay,
due to the location of the lambda sensor.

APPENDIX

A. Mass flow rate through the EGR Valve

The EGR mass flow rate can be assumed as sub-critical
and modeled (see [11]) as

Degr =Svalveψ(Puv) (20)

ψ(Puv) =
Puv√
RTegr

(
Patm

Puv

)1/γ

√√√√√ 2γ

γ −1

1−
(

Patm

Puv

) γ−1
γ


(21)

where Sthr is the effective opening area of the throttle, Puv
is the upstream valve pressure, measured obtained from the
atmospheric pressure and the ∆P-sensor measurements and
γ is the ratio of specific heat. The effective area is itself
statically related to the angular position of the actuator.

In practice, an alternative linearized model may be needed
to account for the potential low values of the differential of
pressure ∆P, which result into a pressure ratio Patm/Puv close
to the unity.
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