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Compensation of an Input-Dependent Hydraulic Input Delay for a Cascaded
Microfluidic Process Governed by Zweifach-Fung Effect

Delphine Bresch-Pietri1, Nikolaos Bekiaris-Liberis2, and Nicolas Petit1

Abstract— In this paper, we consider the control problem of
a microfluidic process designed for the separation operations
of a fluid containing particles in suspension, such as blood.
We consider the case of several cascaded bifurcations, traveled
by the fluid, to maximize the fractionation capabilities of the
device for instance. We control the ratio of the flowrates in
each branch, affecting the fractionation nonlinearly, through
the Zweifach-Fung effect. This process can be modeled as a
cascaded nonlinear dynamics, subject to input-dependent input
delays of hydraulic type, corresponding to the transportation
time along the branches. In this paper, we generalize our
previous design for a single-bifurcation system, based on input-
delay compensation, and establish sufficient conditions for
input-delay compensation and exponential stabilization.

I. INTRODUCTION

In the fields of process or biological engineering, mi-
crofluidic systems are frequently employed for their ability
to handle small volumes with very high precision. These
microsystems typically comprise intricate networks of chan-
nels, ranging in diameter from a few tens to a few hundred
of micrometers [11], [16]. The complex geometries of these
channels give rise to a variety of fluidic mechanisms. One
such phenomenon, which has received considerable attention
in the field of microfluidics, is the so-called Zweifach-Fung
effect [6]: when a fluid carrying particles in suspension
reaches a bifurcation, the volume fraction in particles in-
creases in the high flowrate branch. Many separation devices
capitalize on this phenomenon, to enrich or filter a fluid
containing particles in suspension, such as blood.

This paper focuses on such a separation process governed
by the Zweifach-Fung effect, featuring a simple geometry
depicted in Fig 1. We consider a main channel, used to inject
the fluid of interest, reaching a first bifurcation with two
geometrically identical daughter channels. To enhance the
fractionation capabilities of the device, the lower daughter
channel further bifurcates into two identical channels. The
outlets of each final branch are connected to three reservoirs:
two waste reservoirs and a primary reservoir, aimed at
collecting the enriched outlet fluid. Flowrates in the daughter
and grand-daughter channels can be adjusted to control the
volume fractions in the output reservoirs.
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Fig. 1: Schematic view of a separation process consisting of
two cascaded bifurcations, governed by the Zweifach-Fung
effect. (Bifurcations at stake are Y-shaped but, alternatively,
shaped bifurcations could be considered.)

Building upon the control-oriented model introduced
in [13], this process can be described by a nonlinear dy-
namical system subject to input-dependent input delays.
These delays account for the transport of particles from the
bifurcation points up to the reservoirs. Assuming incompress-
ibility of the fluid under consideration, they can be modeled
as hydraulic delays [3], [5], [19], namely, delays defined
implicitly through an integral of past values of the flowrates,
which are here the control variables. This gives rise to a
cascaded input-dependent input-delay dynamics.

In this paper, we extend our previous control design for a
single-bifurcation chip from [2], which relies on exact com-
pensation of the input delay, with a tailored state prediction.
Prediction-based control strategies are well-established for
constant delays [1], [8] and have been successfully applied
in various contexts (see, for example, [7], [9], [10], [14],
[15], [17]). Yet, their extension to the case of input-dependent
delays revealed troublesome to achieve in general and the
construction of a predictor state in [2] was only made pos-
sible due to the particular structure of the nonlinear system
under consideration. This explicit prediction design reveals
to be also possible for the cascaded-bifurcations system with
two inputs under consideration in this paper. Owing to the
cascaded structure of the plant, we propose to (i) first, use
the nominal prediction-based control law from [2] to control
the volume fraction in the first reservoir with the first input
and (ii) then, in turns, to compensate for the delayed effect
of the first input signal in the second reservoir with the
second input. We formally prove that exponential regulation
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Fig. 2: Schematic view of the cascaded channels of the
separation process.

is achieved, under sufficient conditions bearing on the initial
conditions of the plant.

The paper is organized as follows. We first formulate the
problem under consideration and detail the modeling of the
process at stake in Section II. The proposed control strategy
is then presented in Section III, which also contains our
main stabilization result, proven in Section IV. Simulation
results are then reported in Section V to illustrate the merits
of the proposed control design. Finally, we conclude with
perspectives of future works.

II. PROBLEM UNDER CONSIDERATION

Let us consider the microfluidic chip depicted in Fig. 1.
The liquid traveling across the device consists of a solvent
and particles. The overall objective of the device is to
increase the volume fraction of the outlet fluid, collected in
the main reservoir. This is achieved by a separation process,
occuring at each node of the microfluidic chip.

Denote Q0, Q1 and Q2 the (volume) flowrates in the
input, daughter and grand-daughter channels, as depicted in
Fig. 2. The waste reservoirs are pressurized with a high level
of accuracy, allowing one to control directly the flowrates
Q1 and Q2, due the incompressibility of the fluid under
consideration. Consequently, we consider as control variables
the ratios

u1 =
Q1

Q0
and u2 =

Q2

Q0 −Q1
, (1)

which are the flowrate ratios at each node of the device. We
consider the inlet flowrate Q0 and the inlet particles volume
fraction c as constant, in the following.

A. Volume of particles and hydraulic delays

When the flowrates are changed, the volume fractions
right after the separation points (Nodes 1 and 2) are altered
according to the flowrate ratio, in a nonlinear manner. This
nonlinear mapping can be obtained from experimental mea-
surements, and is depicted in Fig. 3. It captures the so-called
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Fig. 3: Example of a possible mapping f , corresponding to
the experimental data presented in [18] and reported in [13].

Zweifach-Fung effect which, for branches of comparable
geometrical characteristics, but receiving different flowrates,
roughly implies that the volume fraction in particles increases
in the high flowrate branch.

Let us denote v1 and v2 the volumes of particles inside
each of the waste reservoirs. Then, v1 satisfies

v̇1 = cNode1,1(r11(t))Q0u1(t) , (2)

in which, according to the Zweifach-Fung effect, the particle
ratio in the upper branch right after Node 1 is

cNode1,1(t) = cf(u1(t)) , (3)

and where r11(t) = t− δ11(t) is a delay term, capturing the
transport time from Node 1 to Reservoir 1. In details, this dy-
namics accounts for (i) the nonlinear separation phenomenon
occurring right after Node 1, in (3); (ii) the transport time
of the particle fraction along the upper daughter branch,
and (iii) the incompressibility of the flow, leading to a
spatially uniform flow rate along the branch, and thus, to the
appearance of u1(t) in (2). The incompressibility of the flow
(plug-flow assumption, see [12]) also leads to the following
implicit characterization of the hydraulic delay (see [4])∫ t

r11(t)

u1(s)ds =
V11

Q0
≜ T11 , t ≥ 0 , (4)

in which V11 is the volume of the first channel.
Similarly, the volume of particles in the second reservoir

satisfies

v̇2 = cNode2,1(r21(t))(Q0 −Q1(t))u2(t) (5)

in which, similarly, due to the Zweifach-Fung effect and
transport phenomena,

cNode2,1(t) = cNode1,2(r12(t))f(u2(t)) (6)

cNode1,2(t) = cf(1− u1(t)) ≜ cg(u1(t)) (7)

where r12 and r21 are the delay fonctions corresponding to
the transport times, respectively, from Node 1 to Node 2 and



from Node 2 to Reservoir 2. They are defined as the (unique)
solutions to∫ t

r12(t)

(1− u1(s))ds =
V12

Q0
≜ T12 , t ≥ 0 (8)∫ t

r21(t)

u2(s)(1− u1(s))ds =
V21

Q0
≜ T21 , t ≥ 0 (9)

in which V12 and V21 are the volumes of the corresponding
branches.

For the delay functions to be well-defined through (4), (8),
and (9), the flowrates, and thus, the inputs u1 and u2, are
assumed to be lower bounded by a positive constant (see [4]).

B. Volume fraction dynamics

Let us now define the outputs of interest, which are the
ratios of volume fractions in the first and second reservoirs1,
respectively,

y1(t) =
v1(t)

cQ0w1(t)
and y2(t) =

v2(t)

cQ0w2(t)
, (10)

in which w1 and w2 are the (normalized) volumes of fluid
in the two reservoirs. Gathering (2)–(9), it follows that

ẏ1(t) =
u1(t)

w1(t)
(f(u1(r11(t)))− y1(t)) , (11)

ẇ1(t) = u1(t) , (12)

ẏ2(t) =
u2(t)(1− u1(t))

w2(t)

× (f(u2(r21(t)))g(u1(r12 ◦ r21(t)))− y2(t)) , (13)
ẇ2(t) = u2(t)(1− u1(t)) , (14)

in which the delays r11, r12 and r21 are defined through (4)
and (8)–(9), f is assumed to satisfy the following property,
and g(u) = f(1− u).

Assumption 1: The function f : [u, u] 7→ R⋆
+ (with

0 < u < u < 1) is Lipschitz with constant Lf , increas-
ing, and its corresponding inverse is Lipschitz with con-
stant Lf−1 .

III. CONTROL DESIGN

The control objective is to regulate the ratios y1, y2 of
volume fractions in the waste reservoirs to reference val-
ues yr1, y

r
2 (and thus, correspondingly, the one in the main

reservoir, by conservation law). Assuming the references are
achievable, that is, (yr1, y

r
2) ∈ [f(u), f(u)]× [f(u)2, f(u)2],

we denote ur
1 = f−1(yr1) and ur

2 = f−1
(

yr
2

g(ur
1)

)
the

corresponding reference inputs.
Let us first observe that the dynamics (11) and (13) of

the ratios of volume fractions are asymptotically stable in
open-loop (as formally proven in Lemma 1 in [2] for a
single-bifurcation device). Yet, due to their large open-loop
response time, we wish to design a closed-loop strategy.
In the sequel, following [2], we design a predictor-based
feedback law.

1The one in the main reservoir, which is the main variable of interest,
can then indirectly be controlled.

A. Predictors

To formulate exact predictors for the system states, we
follow the design strategy of [2]. First, using the variation
of constant formula for (11) between t and r−1

11 (t), the
dynamics (12) and the properties of (4) (see [2] for details),
it follows that

y1
(
r−1
11 (t)

)
= exp

(
−
∫ r−1

11 (t)

t

u1(s)

w1(s)
ds

)
y1(t) (15)

+

∫ r−1
11 (t)

t

exp

(
−
∫ r−1

11 (t)

s

u1(ξ)

w1(ξ)
dξ

)
u1(s)

w1(s)
f(u1(r11(s)))ds

=
1

w1(t) + T11

(
w1(t)y1(t) +

∫ t

r11(t)

u1(s)f(u1(s))ds

)
≜ p1(t) , (16)

observing that, from (4), w(r−1
11 (t)) = w1(t) + T11 and

performing a change of variable on the last integral in (15) .
Thus, one can compute the future value of y1 at time r−1

11 (t)
in a causal manner, namely, based only on (current and past)
states and inputs values, available at time t.

Similarly, one obtains for the second reservoir

y2
(
r−1
21 (t)

)
= exp

(
−
∫ r−1

21 (t)

t

u2(s)(1− u1(s))

w2(s)
ds

)
y2(t)

+

∫ r−1
21 (t)

t

exp

(
−
∫ r−1

21 (t)

s

u2(ξ)(1− u1(ξ))

w2(ξ)
dξ

)
(17)

× u2(s)(1− u1(s))

w2(s)
f(u2(r21(s)))g(u1(r12 ◦ r21(s)))ds

=
1

w2(t) + T21

(
w2(t)y2(t) +

∫ t

r21(t)

u2(s)(1− u1(s))

× f(u2(s))g(u1(r12(s)))ds

)
≜ p2(t) . (18)

Again, this expression only depends on past values of the
states and the inputs, available at time t, and can thus be
computed.

B. Predictor-based control design

Due to the cascaded structure of the dynamics (11), (13),
we propose to follow a two-steps control procedure: (i) first,
we design u1 to control solely y1; (ii) then, in turn, we design
u2 to control y2, according to the fixed past values of u1

appearing in (13) (which are further delayed, as r12◦r21(t) <
r21(t)).

We thus first design u1. In virtue of (11), and due to the
previous explicit predictor design, we thus pick the control
law for the first reservoir such that

f(u1(t)) = p1(t)− k1(w1(t) + T11)(p1(t)− yr1) (19)

in which p1 is the predictor of y1 defined in (16) and k1 > 0
is fixed and has to be tuned. Provided that the right-hand side
of (19) takes values in [f(u), f(u)], one can then directly
obtain (by Assumption 1)

u1(t) = f−1 (p1(t)− k1(w1(t) + T11)(p1(t)− yr1)) (20)



Observe that this control law is the same as the one obtained
in the single-bifurcation case in [2].

Similarly, the control law for the second reservoir is then
chosen as

u2(t) = f−1

(
1

g(u1(r12(t)))
(p2(t)

− k2(w2(t) + T21)(p2(t)− yr2))

)
, (21)

where k2 > 0 has to be tuned. The objective of these control
laws is to linearize the system in closed-loop, that is, to
obtain the closed-loop dynamics

ẏ1(t) = −k1u1(t)(y1(t)− yr1) (22)
ẏ2(t) = −k2u2(t)(1− u1(t))(y2(t)− yr2) (23)

after a certain time, namely, after both of the closed-loop
input signals reach the plant.

For these control laws to be well-defined, one needs to
guarantee that the inverse of f is well-defined, namely that
the arguments of (20) and (21) take values in [u, u]. This is
the objective of our main result which we now state.

C. Main result

Theorem 1: Consider the closed-loop system consisting of
the dynamics (11)–(14) satisfying Assumption 1 and subject
to the input delays (4), (8)–(9), together with the control
law defined through (16), (18) and (20)–(21). Denote Ψ0

i =
(y0i , w

0
i , u

0
i ) (i = 1, 2), Ψ0 = (Ψ0

1,Ψ
0
2), P1(Ψ

0
1) = p1(0)

and P2(Ψ
0) = p2(0), with p1, p2 defined in (16), (18), and

define

Fm(Ψ0
1, y

r
1) = (g(f−1(yr1)) + LfH(Ψ0

1, y
r
1))f(u) , (24)

FM (Ψ0
1, y

r
1) = (g(f−1(yr1))− LfH(Ψ0

1, y
r
1))f(u) , (25)

H(Ψ0
1, y

r
1) = max

{
sup

t∈[r12(0),0)

|u0
1(t)− f−1(yr1)|,

Lf−1W (e−1)|P1(Ψ
0
1)− yr1|

}
, (26)

in which W is the Lambert function. Then, for all initial
conditions y01 ∈ [f(u), f(u)], y02 ∈ [f(u)2, f(u)2], w0

1 > 0,
w0

2 > 0, u0
1 ∈ C([min {r11(0), r12 ◦ r21(0)} , 0], [u, u]) and

u0
2 ∈ C([r21(0), 0], [u, u]) such that

H(Ψ0
1, y

r
1) <

f(u)− f(u)

f(u) + f(u)

g(f−1(yr1))

Lf
, (27)

yr1 − f(u) ≤ (P1(Ψ
0
1)− yr1)e

−1−W (e−1) ≤ yr1 − f(u) ,
(28)

e2Fm(Ψ0
1, y

r
1) ≤ (1 + e2)yr2 − P2(Ψ

0) ≤ e2FM (Ψ0
1, y

r
1) ,
(29)

there exist k1, k2 > 0 such that exponential regulation is
achieved, namely,

|y(t)− yr| ≤ |y(σ(0))− yr| (30)

× e−min{k1,k2}u(1−u)(t−σ(0)) , t ≥ σ(0) ,

(u1(t), u2(t)) ∈ [u, u]2 , t ≥ 0 , (31)

with σ(0) = max
{
r−1
11 (0), r

−1
21 (0)

}
.

As will appear in the next section, the proof of this result
is constructive and proposes explicit choices for the feedback
gains k1, k2. Yet, future works will focus on improving their
tuning.

According to this result, exponential regulation can be
achieved under the conditions (27)–(29). The two first con-
ditions restrict the magnitude of the initial condition of the
first reservoir and require it to be sufficiently close to the
equilibrium value, that is, (27)–(28) limit the magnitude of
both |u0

1−ur
1| and P1(Ψ

0
1)−yr1 . On the other hand, (28) bears

on the initial condition of the second reservoir, limiting the
magnitude of P2(Ψ

0)−yr2 depending on the initial conditions
of the first reservoir. This is consistent with the structure of
the dynamics and the corresponding control design, as the
first input is designed to regulate the first reservoir but also
impact the second reservoir dynamics, in a somehow passive
manner.

Besides, one can observe that, compared to the single
bifurcation study of [2], the set of stabilizable initial condi-
tions for the first reservoir has been reduced. This is a direct
consequence of the addition of a second reservoir in the set-
up. Indeed, as the dynamics of the second reservoir involves
u1, the regulation of the first reservoir may, in turn, put
excessive constraints on the actuation of the second reservoir
dynamics, prohibiting its regulation. This limits the set of
initial conditions which can be considered.

Robustness properties of this design should of course be
considered in future works, to take into account uncertain
initial conditions.

IV. PROOF OF THEOREM 1

According to the previous design elements, the proposed
control law achieves closed-loop exponential stabilization if
and only if there exist k1, k2 > 0 such that (31) holds.
Indeed, in this case, the closed-loop system is well-defined
and (22)–(23) guarantee exponential convergence, with decay
rate min {k1, k2}u(1− u).

In the sequel of the proof, we will study recursively the
two control laws to guarantee this condition.

A. Condition on the first input u1

Using the monotonicity of f and the control law (20), the
part of condition (31) bearing solely on u1 reformulates as:

∃ k1 > 0 ∀t ≥ 0 (32)
yr1 + (1− k1(w1(t) + T11))(p1(t)− yr1) ∈ [f(u), f(u)] .

This condition being independent of the second reservoir, the
single-birfurcation approach of [2] can be applied. Namely,
observing that, from (12) and (22),

w1(t) =w0
1 +

∫ t

0

u1(s)ds , (33)

p1(t)− yr1 =exp
(
−k1

∫ t

0

u1(s)ds

)
(p1(0)− yr1) , (34)



the following result can be obtained from Lemma 4 in Ap-
pendix, applied with (a, p, b, k) = (yr1, p1(0), w

0
1 + T11, k1),

h = k1
∫ t

0
u1(s)ds (which spans R+ provided k1 > 0 and

u1 ≥ u > 0), and (Gm, GM ) = (f(u), f(u)).

Lemma 1 (Corollary of Theorem 2 in [2]): Consider the
closed-loop system consisting of the dynamics (11)–(12)
satisfying Assumption 1 and subject to the input-delay (4),
together with the control law defined through (16) and (20).
Denote Ψ0

1 = (y01 , w
0
1, u

0
1) and P1(Ψ

0
1) = p1(0). Then,

Eq. (32) holds iff

(1 + e2)yr1 − e2f(u) ≤ P1(Ψ
0
1) ≤ (1 + e2)yr1 − e2f(u)

(35)

and this holds for all k1 ∈
(0, k⋆(f(u), f(u), yr1, P1(Ψ

0
1), w

0
1 + T11)) in which k⋆

is defined in (54).

B. Condition on the second input u2

Consider now the first input u1 as fixed, and taking
values in [u, u]. Using the monotonicity of f and the control
law (21), the part of condition (31) bearing on u2 reformu-
lates as:

∃ k2 > 0 ∀t ≥ 0 yr2 + (1− k2(w2(t) + T21))(p2(t)− yr2)

∈ [g(u1(r12(t)))f(u), g(u1(r12(t)))f(u)] (36)

Such a condition reveals intricate to study, as it involves time-
varying bounds, due to the appearance of delayed values of
the first input signal. Consequently, we propose to formulate
an alternative sufficient condition, involving constant interval
bounds.

To modify the interval in Eq. (36), let us observe that, for
t ≥ 0,

g(u1(r12(t))) ≤ g(ur
1) + sup

t≥r12(0)

(g(u1(t))− g(ur
1)) (37)

≤ g(ur
1) + Lf max

{
sup

t∈[r12(0),0)

|u1(t)− ur
1|,

sup
t≥0

|u1(t)− ur
1|
}

(38)

where we used Assumption 1. Besides, from (20), for t ≥ 0,
it holds

|u1(t)− ur
1| = (39)

|f−1 (yr1 − (1− k1(w1(t) + T11))(p1(t)− yr1))− f−1(yr1)|
≤ Lf−1 |(1− k1(w1(t) + T11))(p1(t)− yr1)| (40)

≤ Lf−1κ(yr1, P1(Ψ
0
1), w

0
1 + T11, k1) , (41)

in which κ is defined in (50). Similar considerations lead to

g(u1(r12(t))) ≥g(ur
1)− Lf max

{
sup

t∈[r12(0),0)

|u1(t)− ur
1|,

Lf−1κ(yr1,Ψ
0
1, w

0
1 + T11, k1)

}
. (42)

A sufficient condition for Eq. (36) to hold is thus

∃ k2 > 0 ∀t ≥ 0 yr2 + (1− k2(w2(t) + T21)) (43)

× (p2(t)− yr2) ∈ [Fm(Ψ0
1, y

r
1, k1), FM (Ψ0

1, y
r
1, k1)] ,

with

Fm(Ψ0
1, y

r
1, k1) = f(u)

(
g(ur

1) + Lf max

{
(44)

sup
t∈[r12(0),0)

|u1(t)− ur
1|, Lf−1κ(yr1, P1(Ψ

0
1), w

0
1 + T11, k1)

})
,

FM (Ψ0
1, y

r
1, k1) = f(u)

(
g(ur

1)− Lf max

{
(45)

sup
t∈[r12(0),0)

|u1(t)− ur
1|, Lf−1κ(yr1, P1(Ψ

0
1), w

0
1 + T11, k1)

})
.

C. Conclusion of the proof of Theorem 1

We wish to guarantee conditions (32) and (43). With this
aim in view, let us pick k1 = 1−W (e−1)

w0
1+T11

> 0. Under (28),
one can check that k1 ∈ (0, k⋆(f(u), f(u), yr1, p

0
1, w

0
1+T11))

and thus, as (28) implies (35), from Lemma 1, (32) holds.
Besides, due to Lemma 3, κ(yr1, P1(Ψ

0
1), w

0
1 + T11, k1) is

minimal and equal to W (e−1) |P 0
1 (Ψ

0
1)−yr1|. Consequently,

in virtue of (27),

Fm(Ψ0
1, y

r
1, k1) < FM (Ψ0

1, y
r
1, k1) . (46)

Then, from Lemma 4 in Appendix applied with (a, p, b, k) =
(yr2, p2(0), w

0
2 + T21, k2), h = k2

∫ t

0
u1(s)(1 − u1(s))ds

(which spans R+ provided k2 > 0 and u1, u2 ≥ u > 0) and
(Gm, GM ) = (Fm, FM ), it follows that (43) holds iff (29)
is satisfied (and for k2 ∈ (0, k⋆(Fm, FM , yr2, P2(Ψ

0), w0
2 +

T21)).
To conclude the proof of Theorem 1, notice that the

closed-loop dynamics (22)–(23) imply

y1(t)− yr1 =e
−k1

∫ t

r
−1
11 (0)

u1(s)ds
(y1(r

−1
11 (0))− yr1) , (47)

for t ≥ r−1
11 (0) ,

y2(t)− yr2 =e
−k2

∫ t

r
−1
21 (0)

u2(s)(1−u1(s))ds
(y2(r

−1
21 (0))− yr2) ,

for t ≥ r−1
21 , (0) (48)

from which (30) then follows.

V. SIMULATION RESULTS

Simulations have been performed over Matlab/Simulink,
to illustrate the interest of the proposed control strategy
and evaluate the conservatism of the obtained stabilization
conditions.

We consider the function f pictured in Fig. 3, correspond-
ing to Lf = 4.6, Lf−1 = 5 and [u, u] = [0.01, 0.8]. The case
study under consideration consists in a chip originally at the
equilibrium corresponding to y01 = y02 = 0.9, that is, with
u0
1 = f−1(y01) ≈ 0.42 and u0

2 = f−1
(

y0
2

g(u0
1)

)
≈ 0.38. The

corresponding delay values are r11(0) = 2.4, r12(0) ≈ 1.71
and r21(0) ≈ 4.54s.

The reference changes to (yr1, y
r
2) = (0.86, 0.88) at time

t = 0.5s. This set-up corresponds to a step of ratio of
volume fraction in the main reservoir from y03 ≈ 1.17 to



yr3 = g(ur
1)g(u

r
2) ≈ 1.21 , which illustrates the fractiona-

tion capabilities of this cascaded device (indeed, a single-
bifurcation one only allows for an equilibrium in the range
of f , that is, a ratio smaller than 1.18).

For these initial conditions, the conditions (27)–(28) of
Theorem 1 are satisfied for values of yr1 in the interval
[0.86, 0.94], while, for yr1 = 0.86, condition (29) holds for
values of yr2 in the interval [0.11, 1.15]. This illustrates that
the sufficient conditions of Theorem 1 impose restrictions on
the achievable reference for the first reservoir.

We picked the feedback gain following the construction
proposed in the proof, that is, k1 = 1−W (e−1)

w0
1+T11

≈ 0.71

and k2 = 3 ∈ (0, k⋆(Fm, FM , yr2, P2(Ψ
0), w0

2 + T21)) ≈
(0, 44.42). One can observe that the proposed prediction-
based control strategy does achieve exponential regulation,
exactly compensating for the input-delay, as nominal delay-
free exponential convergence is obtained.

Interestingly, one can observe the effect of canceling the
cascade of u1 in the second dynamics via (21) (which in-
volves the delayed term g(u1(r12(t)))) on the time-evolution
of u2. Indeed, a first sudden variation can be observed when
the step occurs, at time t = 0.5 and then, around t = 2s,
the delayed effect of the drop of g(u1) occurring at t = 0.5
generates another discontinuity for u2.

VI. CONCLUSION

In this paper, we have considered a cascaded microfluidic
separation process, modeled as a nonlinear dynamics subject
to input-dependent hydraulic input delays. Following our
previous design from [2], we proposed a two-step prediction-
based control design, exactly compensating for the input-
delay. Besides, we provided sufficient conditions to achieve
exponential regulation, characterizing the set of initial con-
ditions of interest.

Future works will focus on characterizing more closely
the feedback gains of interest, to improve closed-loop per-
formances. Also, an alternative viewpoint could be to ex-
plicitly characterize the set of initial conditions that could
be stabilized, depending on the feedback gains. This is a
direction of future research, along with taking into account
input saturation in the closed-loop analysis.

Besides, this study opens the path to explore many other
interesting questions. For instance, one can wonder if, instead
of intending to regulate the reservoirs simultaneously as
considered in this paper, it may be worth sequencing them
and, in that case, in which order. Other perspectives include
the extension of this technique to multiple cascades and to the
case of a sole common waste reservoir, leading to a single-
input control problem.

APPENDIX: INTERMEDIATE RESULTS

In this section, we gather intermediate results which are
helpful for closed-looop stability analysis.

Let us consider scalar variables a, b, p, k, with b, k > 0
and define the function

G : h ≥ 0 7→ a+ (1− bk − h)e−h(p− a) (49)
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(a) Time-evolution of the ratios of volume fractions in each waste
reservoir, for the proposed prediction-based control strategy and in
open-loop.
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(b) Time-evolution of the flowrate ratios, for the proposed
prediction-based control strategy and in open-loop.

Fig. 4: Simulation results obtained with f as pictured in
Fig 3. A reference step is performed at t = 1s, while the
system is originally at the equilibrium y01 = y02 = 0.9 with
u0
1 = f−1(y01) ≈ 0.42 and u0

2 = f−1
(
y02/g(u

0
1)
)
≈ 0.38.

Feedback gains are picked as k1 = (1 − W (e−1)/(w0
1 +

T11) ≈ 0.71 and k2 = 3.

One can straighforwardly prove the following result, by
studying the derivative of G.

Lemma 2: Consider G defined in (49). If bk ≥ 2, G is
monotonic (decreasing if p > a, increasing if p < a, constant
if p = a). Otherwise, G admits an extremum at h = 2− bk,
which is G(2− bk) = a− e−2+bk(p− a).

The following results can then be obtained.
Lemma 3: Consider G defined in (49) and denote

κ(a, p, b, k) ≜ sup
y∈G(R+)

|y − a| (50)



1−W (e−1) 2 bk

κ

|p− a|

W (e−1)|p− a|

Fig. 5: Variations of κ defined in (50) with respect to bk for
fixed values of a and p.

It holds

κ(a, p, b, k) =


(1− bk)|a− p| if bk ≤ 1−W (e−1)

e−2+bk|a− p| if 1−W (e−1) ≤ bk ≤ 2

(bk − 1)|a− p| if bk ≥ 2
(51)

where W is the Lambert function.
The variations of κ are depicted in Fig. 5.
Lemma 4: Consider G defined in (49) and and a non-

empty interval [Gm, GM ] ⊂ R such that (p, a) ∈
[Gm, GM ]2. Then, G(R+) ⊂ (Gm, GM ) iff

(1 + e2)a− e2GM ≤ p ≤ (1 + e2)a− e2Gm (52)
and k ∈ (0, k⋆(Gm, GM , a, p, b)) (53)

in which

k⋆(Gm, GM , a, p, b) (54)

=
1

b

{
1 + ξ(Gm, GM , a, p) if 2a−GM ≤ p ≤ 2a−Gm

2 + ln(ξ(Gm, GM , a, p)) otherwise

and

ξ(Gm, GM , a, p) =


a−Gm

p− a
if p > a

GM − a

a− p
if p < a

+∞ if p = a

(55)
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