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Abstract— This paper presents a prediction-based controller
strategy for linear systems subject to a state-dependent state
delay and distinct constant input delays. We propose to compute
corresponding predictions in cascade and use them in a nominal
control law obtained from the input-delays free case. Using
transport Partial Differential Equation (PDE) reformulations
and backstepping transformations, we show that this control
law compensates for the input delays in closed loop and
provides nominal exponential stabilization. The mechanisms of
this technique are illustrated on the dynamics of the mechanical
vibrations in drilling, which has recently been described as a
cutting process.

I. INTRODUCTION

Prediction-based controllers (see [28], [1], [24]), also
known as Smith predictors or reduction method, has been
the focus of a large number of research directions in the
last decade. This method, which was first introduced to
compensate for a constant input delay affecting a linear
time-invariant dynamics, has only recently been extended
in various contexts: nonlinear plant [14], [19], [21], time-
varying input delay [5], [25], [27], uncertain input delay [10]
or dynamics [7], [23], systems involving both state and
input delays [17], [2] or prediction implementation alterna-
tives [26], [31]. However, all these methods consider a sole
input delay.

Indeed, the problem of distinct delays significantly compli-
cates the prediction design as it requires to compute different
future state values on time horizons which could be larger
than some input delays, making this computation non-causal
at first sight. This is why the first design of a controller
compensating for distinct input delays has only been pro-
posed recently in the seminal paper [29]. In this work, the
problem is formulated as a cascade between several first-
order transport PDE (accounting for the distinct input delays)
and an Ordinary Differential Equation (ODE) and solved
using backstepping to design a prediction-based controller.
The key idea of this prediction technique, extended in [6]
to nonlinear systems and in [18] to systems involving both
state and input delays, is to replace future inputs involved
in the state predictions computation by their closed-loop
expressions.

In this paper, we extend this technique to handle state-
dependent state delays. This type of dependency has been
considered in [3] for a specific class of state-dependent state
delay systems which are not subject to input delay and
in [4] which considers state-dependent input delays, resulting
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in a very intricate relation between the system state and
the control inputs which is not involved here. These works
have inspired the design we proposed in [8] to compensate
for one input delay affecting a linear plant subject to a
distributed state-dependent state-delay. Here, we follow the
same methodology as in our previous work [8] and modify
our prediction design in the spirit of [29] to account for
multiple input-delays.

Following [8], our stability analysis is grounded on PDEs
tools that were proposed lately to address input delay com-
pensation (see [22], [20]) and were extended in [12] to handle
the case of an additional distributed state-delay. Modeling
both actuator and state delays as transport PDEs coupled with
the original ODE, we rely on a backstepping transformation
of the distributed input to analyze the closed-loop stability.
To formulate the corresponding target system, one needs
to study m implicit functional PDEs. While state delay is
responsible for the implicit nature and distributed delay for
the functional one, the consideration of m sets of PDEs
follows from the fact that we are considering m distinct input
delays. We then carry out an L∞ analysis for the closed-loop
system. This along with the prediction design is the main
contribution of the paper.

The paper is organized as follows. In Section II, we
introduce the problem under consideration before providing
the prediction-based control we propose. Then, we present
the stability analysis of the closed-loop dynamics in Sec-
tion III. Finally, Section IV is devoted to an illustration of this
technique mechanisms on the dynamics of the mechanical
vibrations in drilling.

II. PROBLEM STATEMENT AND CONTROL DESIGN

We consider the problem of stabilizing the following
(controllable) linear system subject to a distributed state-
dependent state delay and constant distinct input delays

Ẋ(t) =A0X(t)+A1

∫ t

t−DS(Xt )
X(s)ds+

m

∑
j=1

b jU j(t−DI
j) (1)

in which X ∈ Rn, U = [U1 . . .Um]
T ∈ Rm, the state-delay

DS : C ([−D,0],Rn)→ [0,D] (D> 0) is a continuously differ-
entiable function, DI

1, . . . ,D
I
m are constant input-delays such

that DI
1 < DI

2 < .. . < DI
m and Xt denotes the function Xt : s ∈

[−D,0] 7→ X(t + s). Similarly, in the following, we denote
Xt,S : s ∈ [−DS(Xt),0] 7→ X(t + s) and Ut, j : s ∈ [−DI

j,0] 7→
U(t+s) for j = 1, . . . ,m. We assume1 that DI

1≥D and X0,U0

1This assumption is not restrictive. When the state delay can be larger
than an input delay, the proposed control strategy remains unchanged, but
predictions can be simplified.



are respectively continuously differentiable and continuous
functions.

Before presenting our strategy to handle the distinct input
delays, we make an assumption on the stabilization of the
nominal input delays-free system.

Assumption 1: There exists a feedback law
κ : C 0([−D̄,0],Rn) 7→ R which is a class C 1 function
which can be upper-bounded by a linear mapping and such
that the dynamics

Ẋ(t) = A0X(t)+A1

∫ t

t−DS(Xt )
X(s)ds+

m

∑
j=1

b jκ j(Xt,S) (2)

is globally exponentially stable, i.e., there exist a continuous
functional W : C ([−D̄,0],Rn)→R and constants C1,C2,C3 >
0 such that

C1‖ϕ‖∞ ≤W (ϕ)≤C2‖ϕ‖∞ (3)
|∂ϕW (ϕ)| ≤C3 (4)

and, moreover, the functional W is differentiable along the
trajectories of the closed-loop system (2) and

Ẇ (t)≤−W (t) (5)

It is worth noting that requiring a linearly bounded feed-
back map is not demanding as we consider linear dynamics.

Even if this assumption can seem quite restrictive at first
glance, it actually encompasses a large class of systems, in-
cluding strict-feedforward systems as the following example
illustrates it.

Example 1: Consider the plant

ẋ1(t) =x1(t)+
∫ t

t−DS(Xt )
x1(s)ds+ x2(t) (6)

ẋ2(t) =2x1(t)+ x2(t)+U1(t) (7)
ẋ3(t) =U2(t) (8)

which is under the form (1) with X = [x1 x2 x3]
T . The

state delay DS is a given known state-dependent function.
The subsystems (6)–(7) and (8) are independent. We first
consider (8) and choose

κ2(Xt) =− x3(t) (9)

Now, we focus on the subsystem (x1,x2). Taking x2 as a
virtual input in (6) to map it into the target dynamics ẋ1(t) =
−x1(t) leads to the choice

κ1(Xt) =− [x2(t)− v(t)]−2x1(t)− x2(t)+ v̇(t) (10)

=−7x1(t)−2x2(t)+ x1(t−DS(Xt))−3
∫ t

t−DS(Xt )
x1(s)ds

in which
v(t) =−2x1(t)−

∫ t

t−DS(Xt )
x1(s)ds (11)

The control law κ(Xt) = [κ1(Xt) κ2(Xt)]
T defined

through (9)–(10) satisfies Assumption 1 as it can be
upper-bounded by a linear mapping, it is of class C∞ and
the closed-loop system corresponding to U(t) = κ(Xt) is

ẋ1(t) =− x1(t)+ x2(t)− v(t) (12)
ẋ2(t)− v̇(t) =− (x2(t)− v(t)) (13)

ẋ3(t) =− x3(t) (14)

which is exponentially stable.
We are now ready to detail the control design of (1). We

define
D̃I

i j = DI
i −DI

j , i, j = 1, . . . ,m (15)

and consider the distributed state predictions

P1(t,τ) = (16)

X(τ +DI
1) if t−D−DI

1 ≤ τ ≤ t−DI
1

eA0(τ+DI
1−t)X(t)+

∫
τ

t−DI
1

eA0(τ−s)
[

A1

∫ s

s−DS(P1
s )

P1(t,ξ )dξ

+
m

∑
j=1

b jU j(s− D̃I
j1)

]
ds if t−DI

1 ≤ τ ≤ t

P2(t,τ) = (17)

P1(t,τ + D̃I
21) if t−D− D̃I

21 ≤ τ ≤ t− D̃I
21

eA0(τ+D̃I
21−t)P1(t, t)+

∫
τ

t−D̃I
21

eA0(τ−s)
[

A1

∫ s

s−DS(P2
s )
P2(t,ξ )dξ

+b1κ1(P2
s,S)+

m

∑
j=2

b jU j(s− D̃I
j2)

]
ds if t− D̃I

21 ≤ τ ≤ t

P3(t,τ) = (18)

P2(t,τ + D̃I
32) if t−D− D̃I

32 ≤ τ ≤ t− D̃I
32

eA0(τ+D̃I
31−t)P2(t, t)+

∫
τ

t−D̃I
32

eA0(τ−s)
[

A1

∫ s

s−DS(P3
s )
P3(t,ξ )dξ

+
2

∑
j=1

b jκ j(P3
s,S)+

m

∑
j=3

b jU j(s− D̃I
j3)

]
ds if t− D̃I

32 ≤ τ ≤ t

...
Pm(t,τ) = (19)

Pm−1(t,τ + D̃I
m(m−1))if t−D− D̃I

m(m−1) ≤ τ ≤ t− D̃I
m(m−1)

eA0(τ+D̃I
m(m−1)−t)Pm−1(t, t)+

∫
τ

t−D̃I
m(m−1)

eA0(τ−s)

×
[

A1

∫ s

s−DS(Pm
s )
Pm(t,ξ )dξ +

m−1

∑
j=1

b jκ j(Pm
s,S)+bmUm(s)

]
ds

if t− D̃I
m(m−1) ≤ τ ≤ t

We now use these predictions as argument for the nominal
input-delay free control law in lieu of the original state

U j(t) =κ j(P
j

t,S) , j = 1, . . . ,m (20)

State

Predictions

Distributed
predictions

X(t) X(t+DI
1) X(t+DI

2)

P 1(t, t−DI
1) P 1(t, t) = P 2(t, t− D̃I

21) P
2(t, t) = P 3(t, t− D̃I

32)

p1(0, t) p1(1, t) = p2(0, t) p2(1, t) = p3(0, t)

Prediction P1 Prediction P2 Prediction P3

Fig. 1. Schematic view of the predictions defined in (16)–(17) and
corresponding future values of the state. Distributed predictions involved
in the proof of Theorem 1 and defined in (36),(39) are also depicted.



τ

τ + D̃I
j(j−1)

t− D̃I
j(j−1)

t− D̄

t+ D̃I
j(j−1)

Prediction j

Prediction j − 1

Prediction j history
used for P j(t, τ)

Prediction j − 1 history used

Corresponding future values
of the prediction j − 1

for P j(t, τ)

State

τ +DI
j t+DI

j

Corresponding future values
of the stateFuture values of the state

from predictions 1, . . . , j − 1
t+DI

j−1

t

t− D̃I
j(j−1)

t− D̃I
(j+1)(j−1)

t− D̃I
m(j−1)

Control j

Control j + 1

Control m

Control j history used
for P j(t, τ)

Control j + 1 history
used for P j(t, τ)

Control m history
used for P j(t, τ)

τ

τ − D̃(j+1)j

τ − D̃mj

min(s DS( )s)
τs∈[

1
DI , ]t
j

DI
j

Fig. 2. Schematic view of the variables involved in the computation of the prediction P j(t,τ). Consequently, the computation of Pm(t,τ) involves the
history of X over [mins∈[t,τ+DI

m](s−DS(s)), t] (which is included in [t−D, t]), of U j over [t−DI
j, t] for j = 1, . . . ,m−1 and of Um over [t−DI

m,τ].

and have the corresponding result.
Theorem 1: Consider the closed-loop system consisting

of (1) satisfying Assumption 1 and the control law (20)
involving the predictions (16)–(19). Define the functional

Γ(t) = max
s∈[−D,0]

|X(t + s)|+
m

∑
j=1

max
s∈[−DI

j ,0]
|U j(t + s)| (21)

There exist R,ρ > 0 such that, for (X0,(U1)0,1, . . . ,(Um)0,m)∈
C 0([−D,0],Rn)×C 0([−DI

1,0],R)× . . .×C 0([−DI
m,0],R),

Γ(t)≤ RΓ(0)e−ρt , t ≥ 0 (22)

In order to understand properly the choice of this control
law, we provide several comments next, before detailing the
proof of this result.

First, it is crucial to remark that the function2 P1(t, ·)
defined in (16) is a DI

1 units of time ahead prediction of Xt ,
the state history over a time horizon D. This follows from
the integration of (1) between t and τ +DI

1 which is

X(τ +DI
1) = eA0(τ+DI

1−t)X(t)+
∫

τ+DI
1

t
eA0(τ+DI

1−t) (23)

×
(

A1

∫ s

s−Ds(Xs)
X(ξ )dξ +

m

∑
j=1

b jU j(s−DI
j)

)
Performing a change of variable under the main integral,
one indeed obtains (16) and formally infers that P1(t,τ) =
X(τ +DI

1). Similarly, the function P2(t, ·) defined in (17)
is a DI

2 units of time ahead prediction of Xt , obtained by
integrating (1) between t +DI

1 and τ +DI
1 + D̃I

21 = τ +DI
2.

It is worth noticing that the prediction P2 involves future
values of U1 which are thus replaced by their closed-loop
expressions, which have already been fixed via (20). Thus,

2We write P j as functions of two arguments to emphasize the fact
that predictions should be computed by incorporating measured delayed
states in the definition (16)–(19) as opposed to the integration method
in [2]. Formally, the two formulations are equivalent but the formulation
we propose here should improve the robustness of the controller to model
mismatch.

iteratively, the functions P j(t, ·) defined through (16)–(19)
are DI

j units of time ahead predictions of Xt . These relations
are summarized in Fig. 1. From there, the choice of the
control law naturally follows as plugging (20) into the
original dynamics (1), one informally obtains (2) which is
assumed to be stable. In other words, the role of these
cascaded predictions is to cancel each of the input delays
iteratively to recover an input-delays free dynamics. In short,
multiple input-delays are compensated for by:
• m different predictions, accounting for the m distinct

input delays;
• predictions that are defined sequentially (prediction j

uses prediction j−1 as a starting point, as illustrated in
Fig 2) and replacing future input values by their closed-
loop expressions (20).

Second, it is worth mentioning that, the implicit control
law (20) is actually well-defined as solution of an integral
formulation of (1) (Volterra integral equation). Furthermore,
it can also be computed, relying on suitable discretization
schemes (see [15], [16], [30] for a sole input-delay case) and
this computation is causal as it only requires the knowledge
of the state X over the time horizon [t−D, t] and the inputs
U j over the respective time horizons [t−DI

j, t] ( j = 1, . . . ,m).
This fact is depicted in Fig. 2.

Finally, it is worth understanding that, contrary to [4], we
do not need to impose any restriction on the state-dependent
delay rate here and thus to limit our result to a local one.
Indeed, we consider that this state-dependency only affects
the state delay. Consequently, the predictions (16)–(19) are
not impacted by the state-delay rate, which can be arbitrarily
large a priori and in particular can vary faster than the
absolute time.

We now provide the proof of this theorem.

III. STABILITY ANALYSIS – PROOF OF THEOREM1

In the sequel, for the sake of conciseness, we sometimes
write DS(t) = DS(Xt) and ḊS(t) = dDS

dXt
· Ẋt .



We provide a proof based on PDE considerations in order
to provide tools that could then be used in future works for
robustness analysis.

A. PDEs reformulations
To analyze the stability of the closed-loop system, we

propose to reformulate delays as transport PDEs and define
the distributed variables

ζ (x, t) =X(t +DS(t)(x−1)) (24)

η(x, t) =X(t− D̄+(D̄−DS(t))x) (25)

ζ̄ (x, t) =


ζ

(
(x−1)

D̄
DS(t)

+1, t
)

if x≥ 1− DS(t)
D̄

η

(
D̄

D̄−DS(t)
x, t
)

if x≤ 1− DS(t)
D̄

(26)

u j(x, t) =U j(t +DI
j(x−1)) , j = 1, . . . ,m (27)

in which, in details, ζ accounts for the history of the state
X over a time window of varying length DS(Xt), η for the
complementary history of X over [t− D̄, t−DS(Xt)], ζ̄ for
the entire history over [t−D, t] and u j for the history of the
input j, U j, over [t−DI

j, t].
The plant (1) can then be reformulated as the following

PDE-ODE cascade

Ẋ(t) = A0X(t)+A1DS(t)
∫ 1

0
ζ (x, t)dx+

m

∑
j=1

b ju j(0, t) (28)

DS(t)∂tζ (x, t) =(1+ ḊS(t)(x−1))∂xζ (x, t) (29)
ζ (1, t) =X(t) (30)

(D̄−DS(t))∂tη(x, t) =(1− ḊS(t)x)∂xη(x, t) (31)
η(1, t) =ζ (0, t) (32)

DI
j∂tu j(x, t) =∂xu j(x, t) , j = 1, . . . ,m (33)

u j(1, t) =U j(t) (34)

and, in addition, it follows that

D̄∂t ζ̄ (x, t) =∂xζ̄ (x, t) with ζ̄ (1, t) = X(t) (35)

Now, define distributed predictions

p1(x, t) = eA0DI
1xX(t)+DI

1

∫ x

0
eA0DI

1(x−y) [A1DS
0(χ̄

1(y, ·, t))

×
∫ 1

0
χ

1(y,ξ , t)dξ +
m

∑
j=1

b ju j

(
DI

1
DI

j
y, t

)]
dy (36)

χ̄
1(x,y, t) = (37)
ζ̄

(
y+

DI
1

D
x, t
)

if xDI
1 +D(y−1)≤ 0

p1
(

x+
D
DI

1
(y−1), t

)
if xDI

1 +D(y−1)≥ 0

χ
1(x,y, t) = (38)

X(t +DI
1x+DS

0(χ̄1(x, ·, t))(y−1))

if xDI
1 +DS

0(χ̄1(x, ·, t))(y−1)≤ 0

p1
(

x+
DS

0(χ̄1(x, ·, t))
DI

1
(y−1), t

)
if xDI

1 +DS
0(χ̄1(x, ·, t))(y−1)≥ 0

and, for j = 2, . . . ,m,

p j(x, t) = eA0D̃I
j( j−1)x p j−1(1, t)+ D̃I

j( j−1)

∫ x

0
eA0D̃I

j( j−1)(x−y)

×
[

A1DS
0(χ̄

j(y, ·, t))
∫ 1

0
χ

j(y,ξ , t)dξ (39)

+
j−1

∑
i=1

biκ
0
i (χ

j(y, ·, t))+
m

∑
i= j

biui

(
D̃I

j( j−1)

DI
i

y+
DI

j−1

DI
i
, t

)]
dy

χ̄
j(x,y, t) = (40)

χ̄
j−1

(
1,y+

D̃I
j( j−1)

D
x, t

)
if xD̃I

j( j−1)+D(y−1)≤ 0

p j

(
x+

D
D̃I

j( j−1)
(y−1), t

)
if xD̃I

j( j−1)+D(y−1)≥ 0

χ
j(x,y, t) = (41)

p j−1(1, t + D̃I
j( j−1)x+DS

0(χ̄
j(x, ·, t))(y−1))

if xD̃I
j( j−1)+DS

0(χ̄
j(x, ·, t))(y−1)≤ 0

p j
(

x+
DS

0(χ̄
j(x, ·, t))

D̃I
j( j−1)

(y−1), t
)

if xD̃I
j( j−1)+DS

0(χ̄
j(x, ·, t))(y−1)≥ 0

in which we introduced the function DS
0 defined as

DS
0(χ̄

1(0, ·, t)) = DS(Xt,S).
The distributed predictions p j (36),(39) ( j = 1, . . . ,m)

are simply distributed reformulations of the predic-
tions (16)–(19). This relation is illustrated in Fig. 1.
In details, p j(x, t) accounts for X(t + DI

j−1 + xD̃I
j( j−1))

or, equivalently, P j(t, t + D̃I
j( j1)(x − 1)) while χ̄ j(x, ·, t)

and χ j(x, ·, t) represent the history of p j(x, t) over
[t − D̄, t] and [t − DS(t + DI

j−1 + xD̃I
j( j−1)), t] respectively.

The role of these last two variables is to describe the
state-dependent state delay. This characteristic feature of the
dynamics at stake complicates the analysis as p j,χ j and
χ̄ j are defined depending on each other and should thus be
studied together.

Finally, define the following backstepping transformation

w j(x, t) = u j(x, t)−κ
0
j

(
χ

i+1

(
DI

j

D̃I
(i+1)i

(
x− DI

i

DI
j

)
, ·, t
))

DI
i

DI
j
≤ x≤ DI

i+1

DI
j
, i = 0, . . . , j−1 (42)

in which we introduced the notations κ0(ζ (·, t)) = κ(Xt,S)
and DI

0 = 0. We then have the following result, proved in
Appendix.

Lemma 1: The infinite-dimensional backstepping trans-
formation (42) together with the control law (20) trans-
form (28)–(34) into the target system

Ẋ(t) = A0X(t)+A1DS(t)
∫ 1

0
ζ (x, t)dx (43)

+
m

∑
j=1

b j[κ
0
j (ζ (·, t))+w j(0, t)]



DS(t)∂tζ (x, t) =(1+ ḊS(t)(x−1))∂xζ (x, t) (44)
ζ (1, t) =X(t) (45)

(D̄−DS(t))∂tη(x, t) =(1− ḊS(t)x)∂xη(x, t) (46)
η(1, t) =ζ (0, t) (47)

DI
j∂tw j(x, t) =∂xw j(x, t) , j = 1, . . . ,m (48)

w j(1, t) =0 (49)

The goal of this backstepping variable is to simplify the
Lyapunov analysis by providing suitable boundary conditions
equal to zero in (49). Note that these boundary conditions
follow from the fact that the choice of (42) is consistent
with the choice of the control law (20). In details, in (42),
κ j is evaluated with the distributed prediction i (1 ≤ i ≤ j)
depending on the location of the variable x between 0 and
1: the larger x is, the older the prediction needs to be and
thus the bigger the number of the considered prediction.

Note that we made the choice to introduce all distributed
variables in this section as normalized, i.e. with x ∈ [0,1].
This complicates the expressions of these variable but intro-
duces a linear delay parameterization in (29),(31),(33),(48)
which should be useful, e.g., to carry out a delay-robustness
analysis as performed in [11], [12].

B. Lyapunov analysis
Consider the following Lyapunov functional candidate

Vp(t) =
(

µ0 +1− 1
2p

)
V0(t)2p

+b2p
m

∑
j=1

DI
j

∫ 1

0
e2pµ0xw j(x, t)2pdx (50)

in which V0 has been introduced in Assumption 1, p ∈ N∗
and µ0,b > 0. Taking a time-derivative, one gets

V̇p(t) =−(2p(µ0 +1)−1)V0(t)2p (51)

+(2p(µ0 +1)−1)V0(t)2p−1
∂ϕV0(Xt)

m

∑
j=1

b jw j(0, t)

−b2p
m

∑
j=1

w j(0, t)2p−b2p2pµ0

m

∑
j=1

∫ 1

0
e2pµ0xw2p

j (x, t)dx

Using Young inequality and (4), one obtains

V̇p(t) =−2pµ0V0(t)2p−b2p2pµ0

m

∑
j=1

∫ 1

0
e2pµ0xw2p

j (x, t)dx

−
m

∑
j=1

(
b2p− (µ0 +1)2p|C3b j|2p)w j(0, t)2p (52)

Consequently, choosing

b > max
j=1,...,m

(µ0 +1)|C3b j| (53)

it follows that

V̇p(t)≤−2pηVp(t) (54)

in which η = min
{

µ0
µ0+1 ,

1
DI

m

}
and thus

Vp(t)
1

2p ≤e−ηt
((

µ0 +1− 1
2p

) 1
2p

V0(0) (55)

+b
m

∑
j=1

(
DI

j

∫ 1

0
e2pµ0xw j(x,0)2pdx

) 1
2p
)

This gives(
µ0 +1− 1

2p

) 1
2p

V0(t)+b
m

∑
j=1

(
DI

j

∫ 1

0
e2pµ0xw j(x,0)2pdx

)1
2p

≤ 2me−ηt
((

µ0 +1− 1
2p

) 1
2p

V0(0)

+b
m

∑
j=1

(
DI

j

∫ 1

0
e2pµ0xw j(x,0)2pdx

) 1
2p
)

(56)

Taking the limit as p tends to infinity, one obtains

V0(t)+b
m

∑
j=1

max
x∈[0,1]

eµ0x|w j(x, t)| (57)

≤ e−ηt

(
V0(0)+b

m

∑
j=1

max
x∈[0,1]

eµ0x|wi(x,0)|
)

Finally, using (3), the fact that κ can be upper-bounded by
a linear mapping from Assumption 1 and applying Young
and Cauchy-Schwarz inequalities to the backstepping trans-
formation (42), one obtains the desired result.

IV. ILLUSTRATIVE EXAMPLE – SUPPRESSION OF
MECHANICAL VIBRATIONS IN DRILLING

In this section, we illustrate the proposed control strategy
and its merit on the dynamics of mechanical vibrations in
drilling.

Mechanical vibrations are an important source of Non-
Productive Time (NPT) and failure in the oil drilling industry.

X Controlled force 
and velocity

V : Bit axial velocity
Ω : Bit torsional velocity

Bit-rock interaction

Fig. 3. Schematic view of drilling facilities.

The operator
imposes a force
and rotating
velocity at the
surface, as depicted
on Fig. 3. These
are transmitted to
the Bottom Hole
Assembly (BHA)
several kilometers
downhole. This
device, holding the
drillbit, creates the
borehole. It can
be considered as a
lumped oscillating
mass, subject to
axial and torsional
displacement waves which are traveling up and down the
drillstring at a finite velocity.

The interaction of the drillbit with the rock can be de-
scribed by a cutting process [13]: both the torque and weight-
on-bit are proportional to the depth of cut, defined as the
vertical displacement of the bit over one revolution. This
gives rise to a state-dependent state delay model with distinct



input delay. Indeed, the following equations (see [8], [13])
describe the deviation of the BHA state from an equilibrium

V̇ (t) =−αV (t)−β

∫ t

t−t̄N−t̃N(t)
V (s)ds− γ

∫ t

t−t̄N−t̃N(t)
Ω(s)ds

+αU1(t−Lp/ca) (58)

Ω̇(t) =−α
′
Ω(t)−β

∫ t

t−t̄N−t̃N(t)
V (s)ds− γ

∫ t

t−t̄N−t̃N(t)
Ω(s)ds

+α
′U2(t−Lp/ca) (59)

in which U1(t) = VR(t)+ w̃op(t) and U2(t) = ΩR(t)+ Ω̃(t)
and the state-delay t̃N satisfies the following implicit equation∫ t

t−t̄N−t̃N(t)
Ω(s)ds+Ω0t̃N(t) = 0 (60)

All states and parameters are defined in Table I, with their
dependence on time t and space x. We consider that the top
and bottom velocities3 are measured.

Using the fact that the axial wave velocity is larger than the
torsional one (ca > cτ ), one can observe that equations (58)–
(60) correspond to the plant considered in this paper in (1)
with 4 DS(Xt)= t̄N + t̃N(t), DI

1 = LP/ca and DI
2 = LP/cτ >DI

1.
Finally, Assumption 1 is satisfied here with the feedback law

κ(Xt) =−A1

∫ t

t−DS(Xt )
X(s)ds−K0X(t) (61)

in which K0 is a given matrix such that the closed-loop matrix
dynamics A0 +BK0 is Hurwitz.

Figures 4 and 5 picture simulations where the proposed
controller (20) is used5 to stabilize the equilibrium corre-
sponding to a nominal rotational velocity Ω0 = 120 rev/min.
We pick K0 as a zero matrix as the parameters α and α ′ are
positive and thus A0 is already Hurwitz. We compare this
controller with the one proposed in [8] which voluntarily
delayed the control U1 to obtain a unique input delay for
the two control paths. Both controller are turned on after
10s. One can observe that, after an oscillatory behavior
in open-loop (before 10s), both controllers achieve expo-
nential stabilization towards the desired equilibrium. The
main difference between both controllers can be observed
in Fig. 4. When the first prediction P1 is used in the control
law acting on the axial velocity, this one reacts faster than
with one sole prediction (that is, DI

2 −DI
1 units of time

before). Therefore, transient performances are improved. In
turn, transient performances are slightly improved for the
torsional velocity before the second control action, using P2,
kicks in. However, this action is modest as U2 is still affected
by DI

2 in both cases.

3While the top velocity is conventionally measured, the bottom one may
actually not be available in practice. Future works will investigate the
interest of extending the techniques employed in [9] in this case.

4Note that the state delay is not upper-bounded here, a priori. Future
works should investigate this point.

5Note that here the implementation of both control laws requires to
suppress the reflections at the top (through VR and ΩR) for the two
displacement waves. This cancellation is unlikely to be exact in practice.

V. CONCLUSION

In this work, we proposed an extension of multiple input
delays compensation techniques for linear systems to handle
additional state-dependent state delays. Future works will
focus on the robustness properties to model uncertainties of
this class of techniques, which largely ground on the exact
knowledge of the systems dynamics.

Symbol Unit Description
V (t) m.s−1 Bit axial velocity
Ω(t) rad.s−1 Bit torsional velocity

α , α’, β , Bit-rock interaction law
β ’, γ , γ’ parameters (positive)

t̄N s Nominal state-delay at the bit
t̃N s Deviation of the state-delay at the bit
Ω0 rad.s−1 Nominal rotational velocity

w̃op(t) m.s−1 (Scaled) weight applied by the operator
Ω̃(t) rad.s−1 Rotational velocity applied by the operator
VR(t) m.s−1 Top axial velocity
ΩR(t) rad.s−1 Top rotational velocity

Lp m Drillstring length
ca m.s−1 Axial wave velocity
cτ m.s−1 Torsional wave velocity

TABLE I
STATES AND PARAMETERS OF THE MECHANICAL VIBRATIONS

MODEL (58)–(60)

0 1 2 3 4 5 6 7

Time [s]

13.3

13.35

13.4

13.45

13.5

13.55

V
(t
)[
m
.s

−
1
]

Reference

One-delay prediction

Multi-delay prediction

One delay

Multi-delay

Fig. 4. Axial velocity of the BHA. The solid black line corresponds to
the time instant when the controller is switched on. The dashed black line
corresponds to the time instant when the control kicks in.

0 1 2 3 4 5 6 7

Time [s]

119.4

119.6

119.8

120

120.2

120.4

120.6

120.8

121

Ω
(t
)[
r
a
d
.s

−
1
]

Reference

One-delay prediction

Multi-delay prediction

Fig. 5. Torsional velocity of the BHA. The solid black line corresponds to
the time instant when the controller is switched on. The dashed black line
corresponds to the time instant when the control kicks in.



APPENDIX A – PROOF OF LEMMA 1

We start by noticing that, for j = 1, p j(x, t) =
P j(t, t + D̃I

j( j−1)(x − 1)), that χ̄ j(x,y, t) = P j(t, t +

D̃I
j( j−1)(x − 1) + D̄(y − 1)) and that χ j(x,y, t) =

P j(t, t + D̃I
j( j−1)(x−1)+DS

0(χ̄(x, ·, t))(y−1)) for
(x,y) ∈ |0,1]2 and thus that the same properties hold for all
j = 1, . . . ,m. From (42) evaluated for x = 1 and x = 0, one
thus directly gets that w j(1, t) = u j(1, t)−κ0

j (χ
j(1, ·, t)) = 0

and that w j(0, t) = u j(0, t)−κ0
j (ζ (·, t)).

Following the cascade structure of the predictions defini-
tion, we proceed by iterations to prove that, for j = 1, . . . ,m,

D̃I
j( j−1)∂t χ

j(x,y, t)−∂xχ
j(x,y, t) = 0 (62)

D̃I
j( j−1)∂t χ̄

j(x,y, t)−∂xχ̄
j(x,y, t) = 0 (63)

∂t p j(1, t) = A0 p j(1, t)+A1D0
S(χ̄

j(1, ·, t))
∫ 1

0
χ

j(1,ξ , t)dξ

+
j−1

∑
i=1

biκi(χ
j(1, ·, t))+

m

∑
i= j

biui

(
DI

j

DI
i
, t

)
(64)

We start by studying the dynamics of p1, following the
same steps as in the proof of [8]. Taking space- and time-
derivatives of (36), one gets

∂t p1(x, t) = (65)

eA0DI
1x[A0X(t)+A1DS(t)

∫ 1

0
ζ (x, t)dx+

m

∑
j=1

b ju j(0, t)]

+DI
1

∫ x

0
eA0DI

1(x−y)
[

A1
dDS

0
dχ̄1 ·∂t χ̄

1(y, ·, t)
∫ 1

0
χ

1(y,ξ , t)dξ

+A1DS
0(χ̄

1(y, ·, t)
∫ 1

0
∂t χ

1(y,ξ , t)+
m

∑
j=1

b j∂tu j

(
DI

1
DI

j
y, t

)]
dy

and

∂x p1(x, t) = (66)

A0DI
1eA0DI

1xX(t)+DI
1A1DS

0(χ̄
1(x, ·, t))

∫ 1

0
χ

1(x,ξ , t)dξ

+DI
1

m

∑
j=1

b ju j

(
DI

1
DI

j
x, t

)
+DI

1

∫ x

0
A0DI

1eA0DI
1(x−y)×[

A1DS
0(χ̄

1(y, ·, t))
∫ 1

0
χ

1(y,ξ , t)dξ +
m

∑
j=1

b ju j

(
DI

1
DI

j
y, t

)]
dy

=DI
1eA0DI

1x
[

A0X(t)+A1DS
0(χ̄

1(0, ·, t))
∫ 1

0
χ

1(0,ξ , t)dξ

+
m

∑
j=1

b ju j(0, t)
]
+DI

1

∫ x

0
eA0DI

1(x−y)
[

A1
dDS

0
dχ̄1 ·∂xχ̄

1(y, ·, t)

×
∫ 1

0
χ

1(y,ξ , t)dξ +A1DS
0(χ̄

1(y, ·, t))
∫ 1

0
∂xχ

1(y,ξ , t)dξ

+
m

∑
j=1

b j
DI

1
DI

j
∂xu j

(
DI

1
DI

j
y, t

)]
dy (67)

in which we used an integration by parts. Observing that
χ1(0, ·, t) = ζ (·, t), that χ̄1(0, ·, t) = ζ̄ (·, t) and thus that

DS
0(χ̄

1(0, ·, t)) = DS(t) and using (33), one obtains

DI
1∂t p1(x, t)−∂x p1(x, t) = DI

1

∫ x

0
eA0DI

1(x−y)× (68)[
A1

dDS
0

dχ̄
· (DI

1∂t χ̄
1(y, ·, t)−∂xχ̄

1(y, ·, t))
∫ 1

0
χ

1(y,ξ , t)dξ

+A1DS
0(χ̄

1(y, ·, t))
∫ 1

0
(DI

1∂t χ
1(y,ξ , t)−∂xχ

1(y,ξ , t))dξ

]
dy

From there, using the exact same arguments as in [8], one ob-
tains that (62)–(63) hold for j = 1. Also, from (62) evaluated
for y= 1, one concludes that DI

1∂t p1(1, t) = ∂x p1(1, t). Using
this fact along with (66) evaluated at x = 1, one concludes
that (64) for j = 1 also holds.

Next, we assume that (62)–(64) hold for i = 1, . . . , j− 1.
Taking time- and space-derivatives of (39), one gets

∂t p j(x, t) = eA0D̃I
j( j−1)x∂t p j−1(1, t)+ D̃I

j( j−1)

∫ x

0
eA0D̃I

j( j−1)(x−y)

×
[

A1
dDS

0
dχ̄
·∂t χ̄

j(y, ·, t)
∫ 1

0
χ

j(y,ξ , t)dξ (69)

+A1DS
0(χ̄

j(y, ·, t))
∫ 1

0
∂t χ

j(y,ξ , t)dξ

+
j−1

∑
i=1

bi
dκ0

i
dχ
·∂t χ

j(y, ·, t)+
m

∑
i= j

bi∂tui

(
D̃I

j( j−1)

DI
i

y+
DI

j−1

DI
i
, t

)]
and

∂x p j(x, t) = A0D̃I
j( j−1)e

A0DI
j( j−1)x p j−1(1, t) (70)

+ D̃I
j( j−1)

[
A1DS

0(χ̄
j(x, ·, t))

∫ 1

0
χ

j(x,ξ , t)dξ

+
j−1

∑
i=1

biκ
i
0(χ

j(x, ·, t))+
m

∑
i= j

biui

(
D̃I

j( j−1)

DI
i

x+
DI

j−1

DI
i
, t

)]
+ D̃I

j( j−1)

∫ x

0
A0D̃I

j( j−1)e
A0D̃I

j( j−1)(x−y)

×
[

A1DS
0(χ̄

j(y, ·, t))
∫ 1

0
χ

j(y,ξ , t)dξ

+
j−1

∑
i=1

biκ
i
0(χ

j(y, ·, t))+
m

∑
i= j

biui

(
D̃I

j( j−1)

DI
i

y+
DI

j−1

DI
i
, t

)]
dy

= A0D̃I
j( j−1)e

A0DI
j( j−1)x p j−1(1, t)

+ D̃I
j( j−1)e

A0D̃I
j( j−1)x

[
A1DS

0(χ̄
j(0, ·, t))

∫ 1

0
χ

j(0,ξ , t)dξ

+
j−1

∑
i=1

biκ
i
0(χ

j(0, ·, t))+
m

∑
i= j

b ju j

(
DI

j−1

DI
i
, t

)]
+ D̃I

j( j−1)

∫ x

0
eA0D̃I

j( j−1)(x−y)
[

A1
DS

0
dχ̄
·∂xχ̄

j(y, ·, t)

×
∫ 1

0
χ

j(y,ξ , t)dξ +A1DS
0(χ̄

j(y, ·, t))
∫ 1

0
∂xχ

j(y,ξ , t)dξ

+
j−1

∑
i=1

bi
κ i

0
dχ
·∂xχ

j(y, ·, t)

+
m

∑
i= j

bi
D̃I

j( j−1)

DI
i

∂xui

(
D̃I

j( j−1)

DI
i

y+
DI

j−1

DI
i
, t

)]
dy (71)



in which the last equation was obtained using an integra-
tion by parts. One can observe from (40) that χ̄ j(0, ·, t) =
χ̄ j−1(1, ·, t). Also, from (62) at order j − 1 evaluated
for y = 1, one concludes that D̃I

( j−1)( j−2)∂t p j−1(1, t) =

∂x p j−1(1, t). Using this fact along with (41), one concludes
that χ j(0, ·, t) = χ j−1(1, ·, t). With these considerations and
using (64) at order j−1, one obtains that

D̃I
j( j−1)∂t p j(x, t)−∂x p j(x, t) = D̃I

j( j−1)

∫ x

0
eA0D̃I

j( j−1)(x−y)

×
[

A1
dDS

0
dχ
· (D̃I

j( j−1)∂t χ̄(y, ·, t)−∂xχ̄(y, ·, t))
∫ 1

0
χ(y,ξ , t)dξ

+A1DS
0(χ̄(y, ·, t))

∫ 1

0
(D̃I

j( j−1)∂t χ(y,ξ , t)−∂xχ(y,ξ , t))dξ

+
j−1

∑
i=1

dκ0
i

dχ
· (D̃I

j( j−1)∂t χ(y,ξ , t)−∂xχ(y,ξ , t))
]

dy (72)

From there, using the same arguments as in [8], one
can conclude that (62)–(63) hold at order j. Finally, as
D̃I

j( j−1)∂t p j(1, t) = ∂x p j(1, t) from (62) evaluated for y = 1,
using (70), one obtains (64) at order j.

Hence, one concludes that (62)–(64) hold for j = 1, . . . ,m.

Consequently, from (42), it follows that, for x∈
[

DI
i

DI
j
,

D̃I
i+1

DI
j

]
for a given i = 0, . . . , j−1,

DI
j∂tw j(x, t)−∂xw j(x, t) = DI

j∂tu j(x, t)−∂xu j(x, t)

−
DI

j

D̃I
(i+1)i

κ
0
j

(
D̃I
(i+1)i∂t χ

i+1

(
DI

j

D̃I
(i+1)i

(
x− DI

i

DI
j

)
, ·, t
)

−∂xχ
i+1

(
DI

j

D̃I
(i+1)i

(
x− DI

i

DI
j

)
, ·, t
))

(73)

Therefore, using (33) and (62), it follows that DI
j∂tw j(x, t) =

∂xw j(x, t) for all x ∈ [0,1]. This concludes the proof.
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