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Abstract— This paper presents a robustness result for the use
of a previously developed adaptive output-feedback controller
designed for a pure wave PDE. This one-dimensional wave PDE
has a boundary actuation opposite to an unknown anti-damping
dynamics boundary. We prove that stabilization is still valid
in the case of in-domain viscous damping using a controller
designed neglecting the damping, provided that the damping
coefficient is small enough. Our robustness proof grounds on
the use of an alternative pure wave PDE, neglecting the in-
domain damping. We compare these two systems and apply
a tailored backstepping transformation to carry out Lyapunov
analysis. Numerical simulations show the relevance of our result
for drilling applications and illustrate the merits of this control
design.

I. INTRODUCTION
Numerous systems in various physical areas are modeled

by wave equations, from sound propagation and creation
to the generation of vibrations in mechanical structures
[13]. Even if the underlying propagation phenomenon is
marginally stable, some of those systems exhibit unstable
behaviors. This is the case, e.g., of some engine combustion
modes [1] and of drilling process in the oil industry [8]. For
these two examples, instability arises from an anti-damped
effect occurring at one of the system boundaries.

In this paper, we consider a linear wave equation subject
to in-domain viscous damping with a boundary actuation
opposite to an unknown anti-damping dynamics boundary.
This modeling is representative of the aforementioned cases
of study (see Section V later). Even if one may expect in-
domain damping to have a stabilizing effect, its appearance
significantly complexifies the control task by adding an extra
coupling. While several output feedback laws exist in the
nominal case without damping [15], [3], [9], up to our knowl-
edge, there exists only one design accounting distributed
damping [16]. However, this solution, which grounds on the
backstepping methodologies [10], is a full state feedback.
This, for practical application, requires the development of
an observer, which is still an open question.

For this reason, in this paper, we propose to apply the
adaptive boundary control law designed in [3], which, in ad-
dition to its only use of boundary measurements, counteracts
uncertainties on the anti-damping coefficients. Introducing
Riemann variables, the plant is reformulated as two coupled
transport PDEs (with opposite directions) also coupled with

1C. Roman is with Univ. Grenoble Alpes, GIPSA-lab, 11 rue des
Mathematiques, 38000 Grenoble, France

2D. Bresch-Pietri and 3C. Prieur are with CNRS, GIPSA-lab, 11 rue des
Mathematiques, 38000 Grenoble, France

4O. Sename is with Grenoble INP, GIPSA-lab, 11 rue des Mathematiques,
38000 Grenoble, France

an Ordinary Differential equation (ODE). Comparing this
system to an estimated one neglecting damping, we prove
closed-loop stability and convergence, provided that the
damping coefficient is small enough. This robustness result
is the main contribution of the paper.

The paper is organized as follows. In Section II, we
present the problem under consideration before stating our
main result in Section III, which contains also a discussion
on a Riemann change of variable. Section IV is devoted
to the proof of the main result. Finally some simulations
to illustrate the behavior of our problem on a oil-inspired
drilling application are presented in Section V. We conclude
with directions of future work.

Notations In this paper, | · | is the Euclidean norm
and ‖u(·)‖ is the spatial L2-norm of a functional
[0,1] 3 x 7→ u(x, ·) , which is denoted as

‖u(·)‖=

√∫ 1

0
u(x, ·)2dx (1)

Sometimes, when the context is clear, the abusive notation
‖u‖, will be used to denote ‖u(·)‖.

For (a,b) ∈R2 such that a < b, let us define the standard
projector operator on the interval [a,b] as a function of two
scalar arguments f (denoting the parameter being updated)
and g (denoting the nominal update law) in the following
manner:

PROJ[a,b]( f ,g) = g

 0 if f = a and g < 0
0 if f = b and g > 0
1 otherwise

(2)

II. PROBLEM STATEMENT

Let us consider the following system of a wave equation
with in-domain viscous damping, subject to an anti-damping
boundary, with actuation on the opposite boundary

utt(x, t) = uxx(x, t)−2λut(x, t) (3)
ux(1, t) =U(t) (4)
utt(0, t) = aqut(0, t)+a[ux(0, t)−d] (5)

in which U(t) is the scalar input, (u,ut) is the system
state, with

(
u(.,0),ut(.,0)

)
∈ H1(0,1)×L2(0,1), a > 0 is a

scalar constant. The in-domain viscous damping coefficient
is λ > 0. The anti-damping coefficient is q > 0 and d is the
static bias term. These last two quantities are supposed to
be unknown constant values. In addition to being uncertain,
the plant has all its eigenvalues in the right-hand half
complex plane. In-domain damping in (3) also makes the



control design significantly harder by introducing an internal
coupling, as appears in the following sections. Here, we
propose to use the adaptive controller developed in [3] for the
case λ = 0 (and given below), and to study if the closed-loop
convergence is still achieved for λ > 0.

In indirect adaptive control, certain assumptions over the
boundedness of the unknown parameter values are needed.

Assumption 1: There exist known constants q, q, d and
d such that q < q, d < d and q ∈ [q,q], d ∈ [d,d].

Consider the following control law, designed in [3]:

U(t) =−ut(1, t)+ d̂(t)− (c0 + q̂(t)−1)
(

ea(q̂(t)−1)ut(0, t)

+a
∫ t

t−1
ea(q̂(t)−1)(t−τ)

(
η(τ)− d̂(t)

)
dτ

)
(6)

in which c0 > 0 is a constant, q̂(t) is an estimate of the
unknown parameter q, d̂(t) is an estimate of d, and

η(t) =U(t)+ut(1, t) (7)

The parameter update laws are:

˙̂q(t) =
aγq

1+N(t)
PROJ[q,q]

{
q̂(t),ut(0, t)

(
ut(0, t)

+b1(c0 + q̂(t)−1)
∫ t

t−1
e(a(q̂(t)−1)−1)(τ−t+1)

σ(τ, t)dτ

)}
(8)

˙̂d(t) =
aγd

1+N(t)
PROJ[d,d]

{
d̂(t),−ut(0, t)

−b1(c0 + q̂(t)−1)
∫ t

t−1
e(a(q̂(t)−1)−1)(τ−t+1)

σ(τ, t)dτ

}
(9)

N(t) = ut(0, t)2 +b1

∫ t

t−1
eτ−t+1

σ(τ, t)2dτ

+b2

∫ t

t−1
et−τ (2ut(0,2t−1− τ)−η(τ)+ d̂(t))dτ (10)

in which the bounds q,q,d,d are defined in Assumption
1, PROJ is defined in (2), b1, b2 > 0 are normalization
constants, the update gains γd ,γq > 0 are tuning parameters
and, for t > 0 and t−1 6 τ 6 t,

σ(τ, t) = η(τ)− d̂(t)+(c0 + q̂(t)−1)
(

ea(q̂(t)−1)(τ−t+1)

×ut(0, t)+a
∫

τ

t−1
ea(q̂(t)−1)(τ−χ)(η(χ)− d̂(t))dχ

)
(11)

As this controller was developed for λ = 0, the paper
objective is to study its applicability for the damped case.
In particular, it seems necessary to evaluate for which range
of in-domain damping coefficient values closed loop conver-
gence is obtained. This is formulated in the next section.

III. ROBUSTNESS RESULT

A. Main result

We can prove the following robustness theorem
Theorem 1: Consider the closed-loop system consisting

of the plant (3)-(5), the control law (6) and the parameter

update laws (9)-(8). Under Assumption 1, define the func-
tional Γ(t)

Γ(t) = ut(0, t)2 +
∫ 1

0
ut(x, t)2dx+

∫ 1

0
(ux(x, t)−d)2dx

+(q− q̂)2 +(d− d̂)2 (12)

For any c0 > 0, there exists λ ∗> 0 -depending on initial con-
dition maxs∈[0,2] Γ(−s)- such that, choosing any λ ∈ [0,λ ∗],
there exist positive constants b2(c0,λ

∗), b1(c0,b2,λ
∗), and

γ∗(c0,b1,b2,λ
∗) such that for all γd ∈ (0,γ∗) and γq ∈ (0,γ∗),

then there are R > 0 and ρ > 0 such that

Γ(t)6 R(eρ maxs∈[0,2] Γ(−s)−1), ∀t > 0 (13)

and the regulation in L2-norm follows, i.e

lim
t→∞

ut(0, t) = lim
t→∞
‖ut(t)‖ (14)

= lim
t→∞
‖ux(t)−d‖= lim

t→∞
(d̂−d) = 0 (15)

B. Discussion

According to this result, stability and pointwise conver-
gence are obtained for small enough in-domain damping
values. This result can be easily interpreted in the light
of the control design which was directly inspired from
the undamped case. Note that the stability result (13) is
expressed with a delayed function. This is due to the PDE
coupling introduced by in-domain damping. Besides, this
result is semi-global (λ ∗ depends on initial conditions) as
a result of the normalization involved in (8) and (9).

The proof of Theorem 1 consists of the following steps.
First we reformulate the plant under consideration into
coupled first order PDEs using Riemann variables. Then,
expressing the control and parameter update laws under
spacial form, we apply a backstepping transformation. This
enables us to perform a standard Lyaunov analysis as a third
step. We conclude this proof by showing and expressing the
stability result in terms of the variables of (3)-(5).

C. Reformulation of the system in Riemann variables

Using the following Riemann coordinates and notations

ζ (x, t) = ut(x, t)+ux(x, t)− d̂(t) (16)

ω(x, t) = ut(x, t)−ux(x, t)+ d̂(t) (17)

W (t) = ut(1, t)+U(t)− d̂(t) (18)
v(t) = ut(0, t) (19)

the wave system (3)-(5) is inversibly rewritten into the
following system, which is called Original system,

v̇(t) = a(q−1)v(t)+a[ζ (0, t)− d̃] (20)

ζt(x, t) = ζx(x, t)− ˙̂d(t)−λ (ζ +ω) (21)
ζ (1, t) =W (t) (22)

ωt(x, t) =−ωx(x, t)+
˙̂d(t)−λ (ζ +ω) (23)

ω(0, t) = 2v(t)−ζ (0, t) (24)

We have now one ODE and two first order PDEs, which
are transport phenomena with source terms, the first one



(21) with actuation on one boundary (22), and driving the
ODE (20) through its second boundary. The second transport
phenomenon (23) is backward and driven by the state of the
ODE (v(t)) and the boundary condition of the first PDE.
We have two source terms in each transport equation due to
the in-domain damping. If we consider the system without
in-domain damping (λ = 0), the system writes as a cascade
of two subsystem and the ODE can be controlled applying
delay systems theory. This is the idea motivating the control
law (6), which has been designed using predictor techniques
for input-delay ODEs ( [2], [12], and [11]). Moreover,
the presence of in-domain damping (λ 6= 0), acting as a
distributed coupling law (21) and (23), breaks this cascade.
Theorem 1 states that if the dependence can be neglected,
namely, if the damping coefficient is small enough, the
control law (6)-(9) achieves stability and convergence. In
order to prove Theorem 1 we used another reformulation
of the plant.

IV. PROOF OF THEOREM 1

A. Global reformulation of the system

Let us rewrite the system (20)-(24) into two other systems
called the Estimated and the Auxiliary ones. The Estimated
system is a plant transformation, the dynamics of which is the
same as the system without in-domain damping. To define
these systems, let us first consider the following variables

ζ̂ (x, t) = ζ (x, t)+λ

∫ 1

x
(ζ (χ, t + x−χ)+ω(χ, t + x−χ))dχ

(25)

ω̂(x, t) = ω(x, t)+λ

∫ x

0
(ζ (χ, t− x+χ)+ω(χ, t− x+χ))dχ

−λ

∫ 1

0
(ζ (χ, t− x−χ)+ω(χ, t− x−χ))dχ (26)

1) Estimated system: Equations (25) and (26) lead to the
Estimated system, that is

ζ̂t(x, t) = ζ̂x(x, t)− ˙̂d(t)
ζ̂ (1, t) =W (t)

ω̂t(x, t) =−ω̂x(x, t)+
˙̂d(t)

ω̂(0, t) = 2v(t)− ζ̂ (0, t)

(27)

Note that it has the same form as the one studied in [3]. As
the transformation which maps the Original system, i.e (20)-
(24), into the Estimated system, i.e (27) is not reversible,
more information is needed.

2) Auxiliary system: Let us now consider the difference
between the Estimated system and the Original one, i.e,
we consider the dynamic of ζ̃ (x, t) = ζ (x, t)− ζ̂ (x, t) and
ω̃(x, t) = ω(x, t)− ω̂(x, t). Some computations with the help
of (21)-(24) give

ζ̃t(x, t) = ζ̃x(x, t)−λ (ζ̃ (x, t)+ ω̃(x, t)+ ζ̂ (x, t)+ ω̂(x, t))

ζ̃ (1, t) = 0 (28)

ω̃t(x, t) =−ω̃x(x, t)−λ (ζ̃ (x, t)+ ω̃(x, t)+ ζ̂ (x, t)+ ω̂(x, t))

ω̃(0, t) =−ζ̃ (0, t)

Now rewrite the ODE (20) with variables ζ̃ (x, t) and ζ̂ (x, t),

v̇(t) = a(q−1)v(t)+a[ζ̃ (0, t)+ ζ̂ (0, t)− d̃(t)] (29)

The complete system consisting of the Estimated system, i.e
(27), the Auxiliary system, i.e (28) and finally the ODE (29)
is the one considered from now on.

B. Rewriting of the control and adaptive laws, and backstep-
ping transformation

1) Rewriting of the control and adaptive laws: The pre-
vious form of the control and adaptive laws is useful for
implementation, but another form is needed for the analysis.
This is the purpose of this section. The control law (6), (using
the notation (18) and (19) and the change of variables under
the integral τ = t + x−1), can be rewritten as

W (t) =−(c0 + q̂(t)−1)
(

ea(q̂(t)−1)v(t)

+a
∫ 1

0
ea(q̂(t)−1)(1−x)[η(t + x−1)− d̂(t)]dx

)
(30)

With (7) and (18), one gets

η(τ) =W (τ)+ d̂(τ) (31)

System (28) includes two transport phenomena with source
term, they satisfy for (x,y) ∈ [0,1]2

ζ̂ (x, t) = ζ̂ (y, t + x− y)− d̂(t)+ d̂(t + x− y) (32)

ω̂(x, t) = ω̂(y, t− x+ y)+ d̂(t)− d̂(t− x+ y) (33)

Taking y = 1 in (32), with the boundary condition of the first
transport phenomenon (28), leads to

ζ̂ (x, t) = W (t + x−1)− d̂(t)+ d̂(t + x−1) (34)

and finally matching (25), (30), (31), and (34), one gets

W (t) =−(c0 + q̂(t)−1)
(

ea(q̂(t)−1)v(t)

+a
∫ 1

0
ea(q̂(t)−1)(1−x)

ζ̂ (x, t)dx
)

(35)

This form allows us to write a backstepping transformation,
which will put one boundary condition equal to zero, that is

ẑ(x, t) = ζ̂ (x, t)+(c0 + q̂(t)−1)
(

ea(q̂(t)−1)xv(t)

+a
∫ x

0
ea(q̂(t)−1)(x−χ)

ζ̂ (χ, t)dχ

)
(36)

Similarly with (32) and (33), the adaptive laws can be
rewritten as

˙̂q(t) =
aγq

1+N(t)
PROJ[q,q]

{
q̂(t),y(t)

(
y(t)

+b1(c0 + q̂(t)−1)
∫ 1

0
e(a(q̂(t)−1)−1)xẑ(x, t)dx

)}
(37)

˙̂d(t) =
aγd

1+N(t)
PROJ[d,d]

{
d̂(t),−y(t)

−b1(c0 + q̂(t)−1)
∫ 1

0
e(a(q̂(t)−1)−1)xẑ(x, t)dx

}
(38)

N(t) = y(t)2 +b1

∫ 1

0
ex(ẑ(x, t))2dx+b2

∫ 1

0
e1−x(ω̂(x, t))2dx (39)



This form will allow us to simplify the Lyapunov analysis.
2) Backstepping transformation and target system: Con-

sider the previous backstepping transformation (36). Note
that it has the same form as the one in [3], but on the
Estimated variable, ζ̂ (x, t) now. The global system can then
be reformulated reversibly as the following target system,

v̇(t) =−c0av(t)+a[ẑ(0, t)+ ζ̃ (0, t)+ v(t)q̃(t)− d̃(t)] (40)

ẑt(x, t) = ẑx(x, t)+ ˙̂qgq(x, t)+
˙̂d(t)gd(x, t)

+ [q̃(t)v(t)− d̃(t)+ ζ̃ (0, t)]h(x, t) (41)
ẑ(1, t) = 0 (42)

ω̂t(x, t) =−ω̂(x, t)+ ˙̂d(t) (43)
ω̂(0, t) = (c0 + q̂(t)+1)v(t)− ẑ(0, t) (44)

ζ̃t(x, t) = ζ̃x(x, t)−λ (ζ̃ (x, t)+ ω̃(x, t)+ ζ̂ (x, t)+ ω̂(x, t))
(45)

ζ̃ (1, t) = 0 (46)

ω̃t(x, t) =−ω̃x(x, t)−λ (ζ̃ (x, t)+ ω̃(x, t)+ ζ̂ (x, t)+ ω̂(x, t))
(47)

ω̃(0, t) =−ζ̃ (0, t) (48)

where

gq(x, t) = ea(q̂(t)−1)xv(t)+a
∫ x

0
ea(q̂(t)−1)(x−y)

ζ̂ (y, t)dy

+(c0 + q̂(t)−1)
(

axe(q̂(t)−1)xv(t)

+a2
∫ x

0
(x− y)ea(q̂(t)−1)(x−y)

ζ̂ (y, t)dy
)

(49)

gd(x, t) =−1− (c0 + q̂(t)−1)a
∫ x

0
ea(q̂(t)−1)(x−y)dy (50)

h(x, t) = a(c0 + q̂(t)−1)ea(q̂(t)−1)x (51)

with the use of the inverse backstepping transformation:

ζ̂ (x, t) = ẑ(x, t)− (c0 + q̂(t)−1)
(

e−ac0xv(t)

+a
∫ x

0
e−ac0(x−χ)ẑ(χ, t)dχ

)
C. Stability analysis

1) Lyapunov analysis: Let us consider the following Lya-
punov functional candidate:

V (t) =Vestim(t)+Vdamp(t) (52)

with

Vestim(t) = log(1+N(t))+
q̃(t)2

γq
+

d̃(t)2

γd
(53)

N(t) = v(t)2 +b1

∫ 1

0
exẑ(x, t)2dx+b2

∫ 1

0
e−x

ω̂(x, t)2dx (54)

Vdamp(t) = b3

∫ 1

0
ex

ζ̃ (x, t)2dx+b4

∫ 1

0
e−x

ω̃(x, t)2dx (55)

The form of Vestim(t) is related to the form of the adaptive
law (8) (9) and often used in adaptive control theory [6].
Applying integration by parts and (40)-(44), we compute

V̇estim 6
1

1+N(t)

(
−2c0av(t)2 +2a[v(t)ẑ(0, t)+ v(t)ζ̃ (0, t)

+ v(t)2q̃(t)− v(t)d̃(t)]+2b1

∫ 1

0
exẑ(x, t)

( ˙̂qgq(x, t)+
˙̂dgd(x, t)

+ [q̃(t)v(t)− d̃(t)+ ζ̃ (0, t)]h(x, t)
)
dx+b2(w(0, t)2

− 1
e
‖w(., t)‖2 +2 ˙̂d(t)

∫ 1

0
e−xw(x, t)dx)

)
− 2q̃(t) ˙̂q

γq
− 2d̃(t) ˙̂d

γd

Applying Young’s and Cauchy-Schwarz’s inequalities, one
can get the existence of M0 > 0 such that

2b1ζ̃ (0, t)
∫ 1

0
exh(x, t)ẑ(x, t)dx 6

b1‖ẑ(t)‖2

2
+b1M0ζ̃ (0, t)2

then using the projector properties (2), (37)-(38), and the
proof in [3], one can get the existence of positive functions
M1(b1) > 0, M2(b1) > 0, and M3(b1) > 0 such that, for all
b1 > 0 and for all t > 0,

V̇estim(t)6
1

1+N(t)

(
−
(

b1−
2a
c0
−2b2

)
ẑ(0, t)2−

(
ac0

− γqM1(b1)−2b2(1+ c0 + q̄)2− γdM2(b1)− γdb2M3(b1)

)
v(t)2

−b2

(
1
e
− γdb2M3(b1))‖ω̂‖2− (

b1

2
− γqM1(b1)− γdM2(b1)

− γdb2M3(b1)

)
‖ẑ‖2 +(

2a
c0

+M0b1)ζ̃ (0, t)2
)

(56)

Applying (45)-(48), integrations by parts and Young’s and
Cauchy-Schwarz’s inequalities, one gets the existence of
strictly positive constants M4, M5, ε1, and ε2 such that

V̇damp(t)6 b3

(
−ζ̃ (0, t)2− (1+2λ )‖ζ̃‖2 +λM4

(
‖ζ̃‖2

ε1

+ ε1(‖ẑ‖2 + v(t)2 +‖ω̂‖2 +‖ω̃‖2)

))
+b4

(
ω̃(0, t)2− 1+2λ

e

×‖ω̃‖2 +λM5

(
‖ω̃‖2

ε2
+ ε2(‖ẑ‖2 + v(t)2 +‖ω̂‖2 +‖ζ̃‖2)

))
(57)

Matching (56) and (57), we create a list of sufficient con-
ditions. As the obtained bound on V̇ (t) implies seven norms,
we get seven conditions (corresponding to the fact that each
factory term is chosen negative). Using that 1+N(t)6 eV (t),
the condition for each term is as follows1

ẑ(0, t)2 : b1 >
2a
c0

+2b2 (58)

ζ̃ (0, t)2 : b3 > b4 +
2a+b1M0

c0
(59)

‖ζ̃ (t)‖2 : b3(1+2λ )> λ

(
b3M4

ε1
+b4M5ε2

)
(60)

‖ω̃(t)‖2 : b4

(
1
e
+

2λ

e

)
> λ

(
b3M4ε1 +

b4M5

ε2

)
(61)

v(t)2 : ac0 > 2b2(1+ c0 + q̄)2

+ eV (t)
λ (b3M4ε1 +b4M5ε2) (62)

‖ω̂(t)‖2 :
b2

e
> eV (t)

λ (b3M4ε1 +b4M5ε2) (63)

‖ẑ(t)‖2 : b1 > eV (t)
λ (b3M4ε1 +b4M5ε2) (64)

1We have take the nomenclature as : ”variable norm” ”:” ”condition on
the associated factory term”



In what follows, a method for the choice of parame-
ters condition on parameters is provided. Denoting M̃ =
max(M4,M5), λ is chosen such that

λ = ε
ac0

(2e(1+ c0 + q̄)2 +1)eV (0)M̃(b3ε1 +b4ε2)
(65)

in which 0 < ε < 1. Then b2 is chosen such that (62)-(63)
hold (which exists according to (65)). Further b1 is chosen
such that (58) holds and so does (64). Furthermore b3 and
b4 are chosen such that conditions (59), (60) and (61) hold
(a compromise needs to be chosen for ε1 and ε2). Next by
choosing:

γd + γq <
min

[
ac0−2b2(1+ c0 + q̄)2−Mλ ,

b2
e −Mλ ,

b1
2 −Mλ

]
3max

[
M1(b1),M2(b1),b2M3(b1)

]
in which Mλ = λM̃eV (0)(b3ε1 +b4ε2), using Proposition 12

(cf. Appendix A), there exists η > 0, depending on initial
condition V (0), such that

V̇ (t)6− η

1+N(t)

(
v(t)2 +‖ẑ‖2 +‖ω̂‖2

+ ζ̃ (0, t)2 +‖ζ̃‖2 +‖ω̃‖2
)

(66)

and finally

V (t)6V (0), t > 0 (67)

D. Stability in terms of the functional Γ

We need to establish the stability in terms of Γ(t), i.e (12).
Up to now the stability in terms of the reformulated variables
ζ̂ (x, t), ω̂(x, t), ζ̃ (x, t) and ω̂(x, t) hold by the Lyapunov
analysis, but we need to prove that it for (3)-(5) extended
by the dynamics of the unknown parameter, i.e q̂ and d̂.
First, from the definition of the Riemann variables, and the
intermediate variables, one gets

ut(x, t) =
ζ̂ (x, t)+ ω̂(x, t)+ ζ̃ (x, t)+ ω̃(x, t)

2
(68)

ux(x, t)− d̂(t) =
ζ̂ (x, t)− ω̂(x, t)+ ζ̃ (x, t)− ω̃(x, t)

2
(69)

Therefore, applying Young’s and Cauchy-Schwarz’s inequal-
ities, one can get

‖ut(t)‖2 6 ‖ζ̂ (t)‖2 +‖ω̂(t)‖2 +‖ζ̃ (t)‖2 +‖ω̃(t)‖2

‖ux(t)−d‖2 6
3
2

(
‖ζ̂ (t)‖2 +‖ω̂(t)‖2 +‖ζ̃ (t)‖2 +‖ω̃(t)‖2

)
+3d̃(t)2

Second, from the backstepping transformation and its in-
verse, applying Young’s and Cauchy-Schwarz’s inequalities,
one can show that there exist positive constants r1, r2, s1 and
s2 such that

‖ζ̂ (t)‖2 6 r1y(t)2 + r2‖ẑ(t)‖2 (70)

‖ẑ(t)‖2 6 s1y(t)2 + s2‖ζ̂ (t)‖2 (71)

2In Proposition 1 we used p = 3 x1,2,3 = (v(t),‖ω̂‖,‖ẑ‖), m = 7 and
xi=4,..,7 as the remaining terms

Consequently, with the previous inequalities, it follows that

‖ut‖2 +‖ux−d‖2 6

(
5
2
(1+ r1 + r2)+3γd

)
(eV (t)−1)

Therefore, we have that, for all t > 0

Γ(t)6
(

1+
5
2
(1+ r1 + r2)+ γq +4γd

)
(eV (t)−1)

Finally, with (71) one gets

V (t)6
(

1+ eb1s1 +
1
γd

+
1
γq

)
Γ(t)+ es2b1‖ζ̂ (t)‖2

+b2‖ω̂(t)‖2 + eb3‖ζ̃ (t)‖2 +b4‖ω̃(t)‖2

By the definition of ζ̃ (x, t), ω̃(x, t), ζ̂ (x, t) and ω̂(x, t), using
Young’s and Canchy-Schwarz’s inequalities one gets

‖ζ̃ (t)‖2 6 4λ
2 max

s∈[0,1]
‖ut(t− s)‖2 (72)

‖ω̃(t)‖2 6 16λ
2 max

s∈[0,2]
‖ut(t− s)‖2 (73)

‖ζ̂ (t)‖2 6 4
(
‖ut(t)‖2 +‖ux(t)−d‖2 + d̃(t)2

+4λ
2 max

s∈[0,1]
‖ut(t− s)‖2)

‖ω̂(t)‖2 6 4
(
‖ut(t)‖2 +‖ux(t)−d‖2 + d̃(t)2

+16λ
2 max

s∈[0,2]
‖ut(t− s)‖2)

Thus, there exists ρ > 0 such that

V (t)6 ρ max
s∈[0,2]

Γ(t− s), ∀t > 0 (74)

Matching the previous inequalities gives the stability result
in terms of the functional Γ(t) (13)

Remark 1: One easily gets that eV (0) 6 eρ maxs∈[0,2] Γ(−s)

and so λ ∗ can be chosen according to (65) but expressed in
terms of maxs∈[0,2] Γ(−s) ◦

E. Convergence analysis

From (67), one can easily get that N(t), q̃(t), d̃(t), and
Vdamp(t) are uniformly bounded for t > 0, and therefore
v(t), ‖ẑ(t)‖, ‖ω̂(t)‖, ‖ζ̃ (t)‖, and ‖ω̃(t)‖ are also uniformly
bounded for t > 0. Consequently, from (70), ‖ζ̂ (t)‖ is also
bounded for t > 0.

From there, applying Young’s inequality to (8) and (9), one
can obtain that ˙̂q(t) and ˙̂d(t) are uniformly bounded for t > 0.
Similarly, applying Cauchy-Schwarz’s inequality to (6), one
can obtain that ζ̂ (1, t) is uniformly bounded for t > 0. Using
(25)-(26) one obtains that ζ̃ (x, t) is uniformly bounded for
t > 1 and in particular ζ̃ (0, t) is uniformly bounded for t > 1.
Moreover, as ζ̂ (x, t) = ζ̂ (1, t − 1 + x)−d̂(t)+ d̂(t−1+ x),
ζ̂ (x, t) is also uniformly bounded for t > 1 − x and in
particular ζ̂ (0, t) is uniformly bounded for t > 1. From (36),
ẑ(0, t) = ζ̂ (0, t)+ (c0 + q̂(t)− 1)y(t), and recall ζ̃ (1, t) = 0,
consequently, ẑ(0, t) is also uniformly bounded for t > 1.
Further, from (40)-(48),



d
dt

v(t)2 = 2av(t)
(
− c0y(t)+ ẑ(0, t)+ ζ̃ (0, t)+ v(t)q̃(t)− d̃(t)

)
d
dt
‖ẑ(t)‖2 =−ẑ(0, t)2 +2

∫ 1

0
ẑ(x, t)

(
gq(x, t) ˙̂q(t)

+ ˙̂dgd(x, t)+ [q̃(t)v(t)+ d̃(t)]h(x, t)
)

dx

d
dt
‖ω̂(t)‖2 = ω̂(1, t)2− ω̂(0, t)2 +2 ˙̂d(t)

∫ 1

0
ω̂(x, t)dx

in which ω̂(0, t) = (1 + c0 + q̂(t))y(t)− ζ̂ (0, t). Moreover,
as ω̂(1, t) = ω̂(0, t) + d̂(t) − d̂(t − 1), and using (49)-
(51), (8), (9), Cauchy-Schwarz’s inequality and the pre-
vious considerations, it follows that the right-hand terms
in the previous equations are all uniformly bounded
for t > 2. Furthermore, one gets using Fubini’s the-
orem that

∣∣∣ d
dt ‖ζ̃ (t)‖

2
∣∣∣ 6 16λ 2 maxs∈[0,1] ‖ut(t − s)‖2 and∣∣ d

dt ‖ω̃(t)‖2
∣∣6 64λ 2 maxs∈[0,2] ‖ut(t− s)‖2.

As ‖ut(t)‖ is uniformly bounded -as Γ(t) is- the left-
hand terms on the previous equations are also uniformly
bounded for t > 2. Finally, integrating (66) from 0 to ∞,
it follows that y(t), ‖ẑ(t)‖, ‖ω̂(t)‖, ‖ζ̃ (t)‖, and ‖ω̃(t)‖ are
square integrable. Following Barbalat’s Lemma, y(t), ‖ẑ(t)‖,
‖ω̂(t)‖, ‖ζ̃ (t)‖, and ‖ω̃(t)‖ tend to zero as t tend to ∞. Using
(68)-(69), it follows that |ut(0, t)|, ‖ut(t)‖ and ‖ux− d̂(t)‖
tend to zero as t tends to ∞.

V. APPLICATION AND NUMERICAL SIMULATION
The wave equation (3)-(4) is a normalized model for the

stick-slip phenomenon [8] that occurs in drilling operation
(e.g. [3], [4] and [16]). The drillstring angular oscillations
can be modeled by a wave equation with a nonlinear bound-
ary condition [17], accounting for the friction between the
drillbit and the rock. Even if there exist phenomenological
expressions of this friction [18], [17] and [14], they depend
on parameters, such as the weight on the bit, drilling mud
properties, and the nature of the rock. So they can change
during the drilling process. This is the reason why using
an adaptive controller could be of high interest for this
application.

For drilling, viscous in-domain damping arises from the
contact between the drilling environment and the drillstring.
In simulation we consider that the surrounding environment
consist of water. The viscous coefficient of the water at
20 oC is µwater = 10−3 [Pa.s] (cf. [5]) which implies, with
the dimension of the drillstring, λ = 0.34. The control law
(6) and adaptation laws (8)-(10) are not used for stabilization
but for regulation, i.e., we need to control ut(x, t)−ur

t instead
of ut(x, t). We choose c0 such that ac0 = 1, b2 = 10−4,
b1 = 1, γd = 0.5 and γq = 0.01. Simulations are performed
using physical variables, which are listed with their used
corresponding values in Table 1 and taken from [16] and [7].
Relation between this simulation model and the normalized
one is explained in [16]. The reference, ur

t is taken such
that the unnormalized velocity is θt(ξ ,ct t) = 5 [rad/s], in
which ct is the time normalization coefficient. The top
and bottom velocities are displayed in Figure 1, and the
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Fig. 1. Simulation of the top and bottom velocities. The adaptive controller
is turned on at 15 sec
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Fig. 2. Simulation of the parameter estimations

parameter estimations of d and q are displayed in Figure
2. The adaptive controller, i.e (6), (8) and (9) is turned on
at 15 sec. One can observe that the oscillation existing in
the open-loop phase, i.e. before 15 sec, is compensated for
by the application of the control law. The top and bottom
velocities converge at 95% of the reference, i.e. the top and
bottom velocities are in [4.75,5.25] rad/s, at respectively
22.5 s and 22.3 s corresponding to settling times equal to
7.5 and 7.3 sec. Even if velocity regulation is obtained, one
can observe that the estimation q̂(t) does not converge to
the value of q. Note that this latter observation does not
contradict the conclusion of Theorem 1. Finally, as expected,
d̂(t) converges to d.

Symbol Description Value
L length of the drillstring 2000 [m]
J Drillstring second moment of area 1.19 e-5 [m4]
G shear modulo 79.3 e10 [N/m2]
I Drillstring inertia’s moment per length’s unit 9.5 e-3[kg.m]
Ib BHA moment of inertia 311 [kg.m2]

Dd p Outer diameter of the drill pipe 1.08 e-1 [m]
β Viscous in-domain damping coefficient 0.05 [1/s]
cb Sliding torque coefficient 2.e3 [N.m.s/rad]

Ttob Torque on the bit parameter 7.5 e2 [N.m]
α1, α2, α3 Friction parameters 5.5; 2.2;3500

γ Damping parameter 0.03 [N.m.s/rad]

β is computed with the viscous coefficient of the air at 20 oC that is
µwater = 1 10−3 [Pa.s] and the friction phenomenon is described by the model in [18]

TABLE I
LIST OF THE PARAMETERS USED IN THE PHYSICAL MODEL AND THEIR

VALUES IN THE SIMULATION



VI. CONCLUSION

Simulations have illustrated the practical relevance of the
proposed method for the regulation of a ”stick-slip” phe-
nomenon in oil-drilling, but it can be applied to a much larger
class of physical problems as it works for unknown dynamics
boundary. In future works, one may aim at adapting the
computation of the proof, to extend existing control law
application or to study robustness over, for example, Kelvin-
Voigt in-domain damping, i.e uxxt source term. One limit of
the present method is that we consider in-domain damping as
a disturbance (even if in-domain damping may actually help
the stabilization). For this reason, future works will focus
on developing control laws tailored to handle in-domain
damping.

APPENDIX

A. Technical result

Proposition 1: Consider xi(t) ∈ L2, ∀ 0 < i 6 p + m,
where p 6 m ∈ N∗, V (t) is a positive definite functional of(
xi(t)2

)
i=1...m assume there exists a K∞ function denoted K(.)

such that

V̇ (t)6−
p

∑
i=1

(ai−K(V (t))xi(t)2−
m

∑
i=p+1

bixi(t)2, ∀t > 0 (75)

in which ai > 0, bi > 0 ∀i if ai−K(V (0))>0,∀i then
ai−K(V (t))> 0, ∀i ∀t > 0

Proof: For the sake of simplicity, take p = 1 (similar
arguments hold for the general case). By contradiction,
assume the existence of t0 such that a1 − K(V (t0)) 6 0,
K(V (t)) being continuous using Bolzano’s theorem, there
exists t1 ∈ [0, t0] such that a−K(V (t1)) = 0. We consider t2 =
in f
{

t1 > 0
/

a = K(V (t1))
}

. Using the mean value theorem
, there exists t3 ∈ [0, t2] such that K(V (t))

dt (t3) > 0. Further
using the fact that K(.) is K∞ and so does K(.)−1, we have
V̇ (t3)> 0. We arrive to a contraction with (75) for t ∈ [0, t3].

REFERENCES

[1] A. M. Annaswamy and A. F. Ghoniem. Active control of combustion
instability: Theory and practice. Control Systems, IEEE, 22(6):37–54,
2002.

[2] Z. Artstein. Linear systems with delayed controls: a reduction. IEEE
Transactions on Automatic Control, 27(4):869–879, 1982.

[3] D. Bresch-Pietri and M. Krstic. Adaptive output feedback for oil
drilling stick-slip instability modeled by wave PDE with anti-damped
dynamic boundary. American Control Conference (ACC), Portland,
OR, pages 386–391, 2014.

[4] D. Bresch-Pietri and M. Krstic. Adaptive output-feedback for wave
PDE with anti-damping -Application to surface-based control of oil
drilling stick-slip instability. In 53rd Conference on Decision and
Control, Los Angeles, CA, pages 1295–1300. IEEE, 2014.

[5] W. M. Haynes. CRC handbook of chemistry and physics. CRC press,
2014.

[6] P. A. Ioannou and J. Sun. Robust Adaptive Control. Prentice Hall,
1996.

[7] J. Jansen. Nonlinear dynamics of oilwell drillstrings. PhD thesis, Delft
University of Technology, 1993.

[8] J. Jansen and L. van der Steen. Active damping of self-excited
torsional vibrations in oil well drillstrings. Journal of Sound and
Vibration, pages 179(4):647–688, 1995.

[9] M. Krstic. Dead-time compensation for wave/string PDEs. Journal of
Dynamic Systems, Measurement, and Control, 133(3):031004, 2011.

[10] M. Krstic and A. Smysklyaev. Boundary Control of PDEs. SIAM
Advances in Design and Control, 2008.

[11] W. Kwon and A. Pearson. Feedback stabilization of linear systems
with delayed control. IEEE Transactions on Automatic Control,
25(2):266–269, 1980.

[12] A. Manitius and A. W. Olbrot. Finite spectrum assignment problem
for systems with delays. IEEE Transactions on Automatic Control,
24(4):541–552, 1979.

[13] M. S. D. Queiroz and C. D. Rahn. Boundary Control of Vibration and
Noise in Distributed Parameter Systems: An Overview. Mechanical
Systems and Signal Processing, 16(1):19 – 38, 2002.

[14] T. Ritto, C. Soize, and R. Sampaio. Non-linear dynamics of a drill-
string with uncertain model of the bit-rock interaction. International
Journal of Non-Linear Mechanics, pages 44(8):865–876, 2009.

[15] P. Rouchon. Flatness and stick-slip oscillation. Technical report,
MINES ParisTech, 1998.

[16] C. Sagert, F. Di Meglio, M. Krstic, and P. Rouchon. Backstepping
and flatness approaches for stabilization of the stick-slip phenomenon
for drilling. IFAC Sympositium on System Structure and Control,
Grenoble, France, pages 779–784, 2013.

[17] M. Saldivar, S. Mondie, J. Loiseau, and V. Rasven. Stick-Slip
Oscillations in Oillwell Drillstrings: Distributed Parameter and Neutral
Type Retarded Model Approaches. In Processings of the 18th IFAC
World Congress, Milano, Italy, pages 18:284–289, 2011.

[18] Q.-Z. Zhang, Y.-Y. He, L. Li, et al. Sliding mode control of rotary
drilling system with stick slip oscillation. In 2nd International
Workshop on Intelligent Systems and Applications (ISA), pages 1–4,
2010.


