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Abstract— We develop an adaptive output-feedback con-
troller for a wave PDE in one dimension with actuation and
measurement on one boundary and with an unknown anti-
damping dynamics on the opposite boundary. This model is
representative of drill string torsional instabilities arising in
deep oil drilling, for which the model of bottom interaction
with the rock is poorly known. The key achievement of the
proposed controller is that it requires only the measurements
of top-boundary values and not of the entire distributed state
of the system. Our approach is based on employing Riemann
variables to convert the wave PDE into a cascade of two delay
elements, with the first of the two delay elements being fed
by control and the same element in turn feeding into a scalar
ODE, and to reconstruct the opposite boundary delayed state.
This enables us to employ a prediction-based design for systems
with output and input delays, suitably converted to the adaptive
output-feedback setting. The result’s relevance and ability to
suppress undesirable torsional vibrations of the drill string in
oil well drilling systems is illustrated with simulation example.

I. INTRODUCTION

For oil and gas exploration and production, wells are
drilled with a rotating rock-crushing device, called a bit,
driven by a rotatory table at the surface, equipped with an
electric motor. The torque applied at the surface is transmit-
ted at the bottom of the borehole through drill string, con-
sisting in a succession of thin tubes. Due to its slenderness,
the drill string is subject to various vibration phenomena [8].
One of them is the so-called stick-slip phenomenon, that is
torsional vibrations which appear due to the friction of the
bit with the rock. In details, due to this nonlinear interaction,
the bit slows downs before finally stalling while the rotatory
table is still in motion. This generates a torsional wave
which propagates back to the surface and then reflects from
the rotatory table. The corresponding limit cycle of the
(distributed) drill string velocity should be suppressed to
avoid damages of the devices.

Even if most of the approaches developed in the literature
rely on finite dimensional models [9] [15] [20], the drill
string torsional dynamics is more accurately represented
by a linear wave equation subject to non-linear boundary
conditions accounting for the top-drive and frictional pro-
cesses [2] [16]. Lately, by neglecting the effect of damping
along the structure, this model has been revisited and the bit
dynamics recast as a neutral delay differential equation [19].
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In this paper, we follow this overture and propose to study
a wave equation subject to linearized anti-damping boundary
conditions with unmatched parametric uncertainty, in view of
oil drilling application. Indeed, in addition to being nonlinear,
the rock-on-the-bit friction term involved in the stick-slip
modeling is highly uncertain as it depends among other
factors [13] [15] on the nature of the rock which varies with
time and operation and is therefore poorly known.

Following [3] and our recent studies [4] [5], we propose
to employ modified Riemann variables to reformulate the
plant as a linear input-delay model cascaded with a transport
equation opposite of the input propagation direction. This
frameworks allows then to reconstruct the delayed bottom ve-
locity from top-boundary measurement. Recasting the prob-
lem as an output- and input-delay problem, we propose to
use infinite-dimensional time-delay tools for control design,
namely a prediction-based controller and a tailored Lyapunov
methodology for stability analysis.
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Fig. 1. Schematic view of a drilling system.

Both the
controller and
the parameter
estimators that
we design employ
only top-boundary
measurements.
This is the main
achievement of
this paper. It
is particularly
relevant from an
application point
of view because,
in a drilling
system, bottom-
hole sensors and
actuators have a high risk of collapse due to their location1.
While [18] also proposes for the same system an output-
feedback control law stabilizing the bit velocity and [11]
states an adaptive stabilization result for a similar unstable
wave PDE with unmatched parametric uncertainty, the
present paper is the first result on output-feedback adaptive
control providing a mixed L2/Linf-norm stabilization result
for the entire distributed state.

The paper is organized as follows. In Section II, we

1However, some recent works have investigated the potential of using the
so-called weight-on-the-bit at the bottom of the borehole [6] to suppress
stick-slip oscillations. Yet, such approachs are not commonly used and
rotatory table feedback control is most often employed.



describe the linear dynamics under consideration before
presenting our adaptive controller and the main stabilization
result of the paper in Section III. Then, before providing
its proof in Section V, we apply the proposed approach
to surface-based stick-slip suppression in Section IV and
illustrate its merits in simulation.

Notations. | · | is the Euclidian norm and ‖u(·)‖ is the
spatial L2-norm of a signal u(·,x), x ∈ [0,1], i.e.

‖u(t)‖=

√∫ 1

0
u(x, t)2dx (1)

For (a,b) ∈ R2 such that a < b, we define the standard
projection operator on the interval [a,b] as a function of two
scalar arguments f (denoting the parameter being updated)
and g (denoting the nominal update law) as follows:

Proj[a,b]( f ,g) = g


0 if f = a and g < 0
0 if f = b and g > 0
1 otherwise

(2)

II. PROBLEM STATEMENT

We investigate closed-loop regulation toward a trajectory
ur(x) = dx+u0 (u0 ∈ R) for the following system

uxx =utt (3)
ux(1, t) =U(t) (4)
utt(0, t) =aqut(0, t)+a[ux(0, t)−d] (5)

in which U(t) is the scalar input, (u,ut) is the system state
with (u(.,0),ut(.,0))∈H1([0,1])×L2([0,1]), a> 0 is a scalar
constant parameter and both the anti-damping parameter
q > 0 and the trajectory coefficient d ∈ R are unknown. We
assume that only the signal ut(1, ·) is measured for all time
and we aim at developing an adaptive control law.

Despite the uncertainties, a key control challenge here is
the instability arising from the anti-damping dynamics (5),
which acts on the opposite boundary from the one that is
controlled. To deal with parameter uncertainties, as always in
indirect adaptive control, we formulate an a priori assumption
on the parameter values knowledge.

Assumption 1: There exist known constants q, q, d and d
such that q < q, d < d, q ∈ [q,q] and d ∈ [d,d].
As a first step in our design, we reformulate plant (3)–(5) by
introducing the following modified Riemann variables and
transformed control variable

ζ =ut +ux− d̂(t) (6)

ω =ut −ux + d̂(t) (7)

W (t) =U(t)+ut(1, t)− d̂(t) (8)

in which d̂(t) is an estimate of d. This yields the following

new dynamics, in which we introduce d̃(t) = d− d̂(t),

utt(0, t) =a(q−1)ut(0, t)+a[ζ (0, t)− d̃(t)] (9)

ζt =ζx− ˙̂d(t) (10)
ζ (1, t) =W (t) (11)

ωt =−ωx +
˙̂d(t) (12)

ω(0, t) =2ut(0, t)−ζ (0, t) (13)

Specifically, in this new framework, the wave equation is
represented as the cascade of two opposite transport PDEs
with source term (10) and (12) with one ODE (9) being
driven by the first PDE and feeding the second one. The
boundary condition (13) accounts for the reflection of the
wave at x = 0.

Remark 1: From the transport equations (10) and (12),
we have that ζ (x, t) = ζ (y, t+x−y)− d̂(t)+ d̂(t+x−y) and
ω(x, t) = ω(y, t− x+ y)+ d̂(t)− d̂(t− x+ y) for any (x,y) ∈
[0,1]2 and t ≥ 0.

Remark 2: Note that ζ (1, t) and ω(1, t) are known
for all time, as ut(1, t) is measured and U(t) = ux(1, t)
and d̂(t) are known from (6)–(7). Further, follow-
ing Remark 1 ζ (0, t − 1) = ζ (1, t − 1) − d̂(t) + d̂(t−1)
and ω(0, t−1) = ω(1, t) + d̂(t) − d̂(t−1). Consequently,
ut(0, t−1) = 1

2 (ζ (0, t−1)+ω(0, t−1)) is also known as,
replacing with (6)–(7),

ut(0, t−1) =
1
2
[ut(1, t)+ut(1, t−2)−ux(1, t)+ux(1, t−2)]

(14)
Following [10], when ˙̂d(t) = 0, (9)–(11) can be interpreted

as an input-delay ODE with one-unit of time delay. This
motivates our control design.

III. CONTROL DESIGN

Consider the control law

U(t) =−ut(1, t)+ d̂(t)− (c0 + q̂(t)−1)
(

e2a(q̂(t)−1)
µ(t)

+a
∫ t

t−2
ea(q̂(t)−1)(t−τ)[η(τ)− d̂(t)]dτ

)
(15)

in which c0 > 0 is a given constant, q̂(t) is an estimate of
the unknown parameter q and

µ(t) =
1
2
[ut(1, t)+ut(1, t−2)−ux(1, t)+ux(1, t−2)] (16)

η(t) =U(t)+ut(1, t) (17)

The parameter estimate update laws are chosen as

˙̂q(t) =
aγq

1+N(t)
Proj[q,q]

{
q̂(t),µ(t)

(
µ(t) (18)

+b1(c0 + q̂(t)−1)
∫ t

t−2
e(a(q̂(t)−1)+1)(τ−t+2)w(τ, t)dτ

)}
˙̂d(t) =− aγd

1+N(t)
Proj[d,d]

{
d̂(t),µ(t) (19)

+b1(c0 + q̂(t)−1)
∫ t

t−2
e(a(q̂(t)−1)+1)(τ−t+2)w(τ, t)dτ

}



N(t) = µ(t)2 +
b1

2

∫ t

t−2
eτ−t+2w(τ, t)2dτ

+b2

∫ t

t−1
eτ−t+1[2µ(τ)−η(τ−2)+ d̂(t)]2dτ (20)

in which the bounds q,q,d,d are defined in Assumption 1,
the update gains γd ,γq > 0 and the normalization constants
b1,b2 > 0 are tuning parameters, Proj is the standard projec-
tion operator and, for t ≥ 0 and t−2≤ τ ≤ t,

w(τ, t) =η(τ)− d̂(t)+(c0 + q̂(t)−1)
(

ea(q̂(t)−1)(τ−t+2)
µ(t)

+
∫

τ

t−2
ea(q̂(t)−1)(τ−ξ )[η(ξ )− d̂(t)]ds

)
(21)

To further understand the meaning of this control strategy,
we provide several comments next, before stating our main
result.

The choice of the control law originates from the fact
that (9)–(11) in addition to the considerations given in Re-
mark 2 can be interpreted as an output- and input-delay ODE.
Specifically, in the case of known parameters d and q, one
can simply choose q̂ = q , d̂ = d and obtain W (t) = η(t)−d.
Then, the following prediction-based control law [1] [14]
would exactly compensate the delay after one unit of time

W (t) =− (c0 +q−1)
(

e2a(q−1)ut(0, t−1)

+a
∫ t

t−2
ea(q−1)(t−τ)[η(τ)−d]dτ

)
(22)

In other word, as W (t) = ut(0, t +1) is a two units of
time ahead prediction starting from the delayed output
ut(0, t−1) = µ(t), after one unit of time, the closed loop
dynamics writes utt(0, t) = −c0ut(0, t), which is exponen-
tially stable. Then, from Remark 2 and applying the certainty
equivalence principle, the control law (15) follows.

The update laws (18)–(19) originate from a Lyapunov
design, as detailed in Section V. As usual in adaptive
control [7] [12], we employ normalization and projection
operators to guarantee global tracking.

Theorem 1: Consider the closed-loop system consisting
in the plant (3)-(5), the control law (15) and the parameter
update laws (18)–(21). Define the functional

Γ(t) =
∫ t

t−1
ut(0,s)2ds+ max

s∈[t−1,t]

∫ 1

0
[ux(x,s)−d]2dx

+ max
s∈[t−1,t]

∫ 1

0
ut(x,s)2dx+(q− q̂(t))2 +(d− d̂(t))2 (23)

For any c0 > 0, there exist γ∗ > 0 and R,ρ > 0 such that, for
any γ ∈ (0,γ∗), then

∀t ≥ 0 , Γ(t)≤ R(eρΓ(0)−1) (24)

and the regulation in maximum norm follows, i.e.,

lim
t→∞

max
x∈[0,1]

|ut(x, t)|= lim
t→∞

max
x∈[0,1]

|ux(x, t)−d|

= lim
t→∞

(d− d̂(t)) = 0 (25)
Before providing the proof of this theorem, we detail its

application in the context of oil drilling vibrations stabiliza-
tion.

IV. APPLICATION TO SURFACE-BASED OIL-DRILLING
STICK-SLIP STABILIZATION

Following [18], after normalization (see [17]) and neglect-
ing damping, the torsion dynamics of an oil well drill string
such as the one pictured in Fig. 1 writes

utt(x, t) =uxx(x, t) (26)
ux(1, t) =U(t) (27)
utt(0, t) =aF(ut(0, t))+aux(0, t) (28)

in which u is the angular displacement of the drill string, U is
the scalar input,a > 0 is constant and F is a given nonlinear
function. In details, the boundary conditions account for two
different phenomena: (27) represents the torque actuation
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Fig. 2. Rock-on-bit friction term, as a function
of the bit angular velocity.

of the rotatory
table at x = 1
and (28) models
the dynamics of
the drill bit, subject
to friction while
interacting with the
rock. The function
F represents the
rock-on-bit friction

and is pictured in Fig. 2. This function is highly uncertain
as it depends among other things on the nature of the rock,
which varies with operation and is also poorly known.

The control objective is to stabilize the angular velocity
ut(·, t) toward a given uniform rotatory speed ur

t . Correspond-
ing steady-state angular displacement profiles are therefore
ur(x, t) = ur

t t − F(ur
t )x + u0 (u0 ∈ R) and the correspond-

ing steady-state control law is U r = −F(ur
t ). Consider-

ing that ur
t = 0 and the linearized version of (26)–(28),

one obtains (3)–(5) with corresponding unknown parameter
d =−F(ur

t ) and q= ∂F
∂ut

(ur
t ). Therefore, Theorem 1 holds lo-

cally and we propose to apply the adaptive control law (15)–
(21) for regulation, i.e. with µ(t)−ur

t in lieu of µ(t).
To give physical insight on its performances, simulations

results are provided in physical coordinate, i.e. using the
model proposed in [18] which is equivalent to (26)–(28)
(see [17]). The model parameters used in simulations are
taken from [17] to ease performance comparisons and gath-
ered in Table I. Velocity reference is chosen as θ r

t = 5 rad/s
(or equivalently ur

t ≈ 3 s−1). Corresponding unknown pa-
rameter are therefore d = 16 and q = 0.31. Initial parameters
estimates are obtained with an incorrect rock-on-bit friction
function and are d̂(0) = 16.15 and q̂(0) = 0.53. The control
gain is chosen such that c0a = 1.

The corresponding closed-loop simulations are pictured
in Fig. 3. The controller is turned on at t = 9 s. One
can observe that the open-loop system not only exhibits
a oscillatory behavior, as previously discussed, but is also
biased because of the uncertainty of the rock-on-bit friction
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Fig. 3. Stabilization of plant (26)–(28) using the output-feedback adaptive
controller proposed in Theorem 1 for the unknown parameters d =−F(ur

t )
and q = dF

dut
(ur

t ) (c0 = 1/a, γd = 8, γq = 1 and b1 = 1e−3, b2 = 0.1).

term which is used as feedforward2. The proposed closed-
loop strategy efficiently suppresses both of these effects.
The control starts acting on the bit velocity around 9.5 s,
which is consistent with the time of propagation of the
physical system , i.e., T ≈ .6s (see [17] and Table I). From
there, the bit velocity converges in an exponential manner
to its reference. The velocity of the rotatory table follows
a similar trend, delayed by T s, which corresponds to the
time needed to the control law to propagate back to the
surface and is therefore consistent with the theory. Fig. 3(b)
pictures the variation of the parameter estimates. As stated in
Theorem 1, the rock-on-bit friction term d is asymptotically
estimated. On the other hand, the estimate of the anti-
damping coefficient does converge but not to the unknown
parameter, even if stabilization is achieved. This behavior
well-known in adaptive control [7] is consistent with the error
equations.

The obtained performance favorably compare to the ones
recently obtained in the literature [17] [20] and can be easily
tuned through the choice of the feedback gain c0 which
represents the desired closed-loop eigenvalue. However, as
our approach aims at compensating the delay arising from the
wave propagation from the surface to the bit and on relying
on the stablity of the reverse transport phenomenon, it suffers
from the fact that a minimum settling time exists, which is
equal to twice the propagation delay and therefore superior to
the one obtained in [17] [18]. Nevertheless, contrary to these
ones, our controller does not require neither the knowledge
of the distributed state nor the one of the bottom velocity.

2The input oscillations that can be observed in Fig. 3 correspond to a
constant rotatory table velocity in the physical coordinate (see [17]). The
rotatory table constant value is chosen according to the poorly known rock-
on-the-bit friction term and therefore biased.

Symbol Description Value
G Shear modulus of the drill pipe 79.6 e10 N/m2

I Drill pipe moment of inertia 0.095 kg.m
per unit of length

IB Moment of inertia of the BHA 311 kg.m2

J Drill pipe second moment of area 1.19 e-5 m4

L Length of the drill pipe 2000 m
Ttob Torque on the bit parameter 7500 N.m

α1, α2, α3 Friction parameters 5.5; 2.2;3500
γ Damping parameter 0.03 N.m.s /rad

BHA stands for Bottom Hole Assembly (bit and drill collars, see Fig. 1).

TABLE I
LIST OF THE PARAMETERS USED IN SIMULATIONS (SEE [17] FOR

PHYSICAL MODELING AND NORMALIZATION).
V. PROOF OF THEOREM 1

A. Delayed variables and backstepping transformation

To account for the fact that we can reconstruct a one
unit of time-delayed version of the bottom velocity (see
Remark 2), we perform our stability analysis with a delayed
set of variables, which are the following (in the sequel, we
consider that ut(0, t−1) = µ(t) is known),

X(t) =ut(0, t−1) (29)

α(x, t) =
{

ζ (2x, t−1)+ d̂(t−1)− d̂(t) , x ∈ [0,1/2]
ζ (2x, t) , x ∈ [1/2,1]

(30)

β (x, t) =ω(x, t−1)− d̂(t−1)+ d̂(t) (31)

and satisfy the following dynamics, using (9)–(13)

Ẋ(t) =a(q−1)X(t)+a[α(0, t)− d̃(t)] (32)

2αt =αx−2 ˙̂d(t) (33)
α(1, t) =W (t) (34)

ωt =−ωx +
˙̂d(t) (35)

ω(0, t) =2g(t)−α(1/2, t) (36)

βt =−βx +
˙̂d(t) (37)

β (0, t) =2X(t)−α(0, t) (38)

with

g(t) =ea(q−1)X(t)+a
∫ 1

0
ea(q−1)(1−x)[α(x/2, t)− d̃(t + x)]dx

(39)

In details, α accounts for the (modified) history of ζ over
a time window of two-units of time, while β account for
the (modified) history of ω over one-unit of time. Note that
ω is not necessary to study the system stability and is only
included in the analysis to be able to reconstruct and express
our stability result in terms of the physical variables ut and
ux− d̂. Overall, the representation (32)–(38) accounts for the
system state (u,ut) over a time window of one unit of time.

Now, we consider the backstepping transformation of the
distributed variable α

z(x, t) =α(x, t)+(c0 + q̂(t)−1)
(

e2a(q̂(t)−1)xX(t)

+2a
∫ x

0
e2a(q̂(t)−1)(x−y)

α(y, t)dy
)

(40)



Following Remark 1 and with a suitable change of variable,
one can observe that this transformation is closely related
to (21), namely z(x, t) = w(t + 2(x − 1), t) for x ∈ [0,1]
and t ≥ 0. Using this relation, the control law (15) can be
reformulated as

W (t) =− (c0 + q̂(t)−1)
(

e2a(q−1)X(t)

+2a
∫ 1

0
e2a(q̂(t)−1)(1−x)

α(x, t)dx
)

(41)

The plant (32)–(38) can then be reformulated as the target
system

Ẋ(t) =− c0X(t)+a
(
z(0, t)+ q̃(t)X(t)− d̃(t)

)
(42)

2zt =zx + ˙̂q(t)gq(x, t)+
˙̂d(t)gd(x, t)

+ [q̃(t)y(t)− d̃(t)]h(x, t) (43)
z(1, t) =0 (44)

ωt =−ωx +
˙̂d(t) (45)

ω(0, t) =2g(t)+ z(1/2, t)− (c0 + q̂(t)−1)

×
(

e−ac0X(t)+2a
∫ 1/2

0
e−ac0(1−2y)z(y, t)dy

)
(46)

βt =−βx +
˙̂d(t) (47)

β (0, t) =(1+ c0 + q̂(t))X(t)− z(0, t) (48)

in which q̃(t) = q − q̂(t) is the anti-damping parameter
estimation error, g is given in (39) and

gq(x, t) =e2a(q̂(t)−1)xX(t)+2a
∫ x

0
e2a(q̂(t)−1)(x−y)

α(y, t)dy

+(c0 + q̂(t)−1)
(

2axe(q̂(t)−1)xX(t)

+4a2
∫ x

0
(x− y)e2a(q̂(t)−1)(x−y)

α(y, t)dy
)

(49)

gd(x, t) =−2−2a(c0 + q̂(t)−1)
∫ x

0
e2a(q̂(t)−1)(x−y)dy (50)

h(x, t) =2a(c0 + q̂(t)−1)e2a(q̂(t)−1)x (51)

This target system is the one which is used in the Lya-
punov analysis, as it presents the suitable boundary condition
z(1, t) = 0.

B. Proof of stability

1) Lyapunov analysis: Consider the Lyapunov functional
candidate V =V1 +V2, with

V1(t) = log(1+N(t))+
q̃(t)2

γq
+

d̃(t)2

γd
(52)

V2(t) =
∫ 1

0
e1−x

ω(x, t)2dx (53)

in which, following Remark 1, the normalization factor
originally defined in (20) can be expressed as

N(t) =X(t)2 +2b1

∫ 1

0
exz(x, t)2dx+b2

∫ 1

0
e1−x

β (x, t)2dx

(54)

Taking a time-derivative and using integrations by parts, one
obtains

V̇1(t) =
1

1+N(t)

(
−2c0X(t)2−b1(z(0, t)2 +‖z(t)‖2)

+2a(z(0, t)+ q̃(t)X(t)− d̃(t))X(t)+2b1[q̃(t)X(t)− d̃(t)]

×
∫ 1

0
exh(x, t)z(x, t)dx+2b1 ˙̂q(t)

∫ 1

0
exgq(x, t)z(x, t)dx

+2b1
˙̂d(t)

∫ 1

0
exgd(x, t)z(x, t)dx+b2

(
eβ (0, t)2−‖β (t)‖2

−2 ˙̂d(t)
∫ 1

0
ex

β (x, t)dx
))
− 2q̃(t) ˙̂q(t)

γq
− 2d̃(t) ˙̂d(t)

γd
(55)

Using the properties of the projection operator and the update
laws (18)–(19) reformulated in terms of the backstepping
transformation z(x, ·) with the help of Remark 1, one gets

V̇1(t) =
1

1+N(t)

(
−2c0X(t)2 +2az(0, t)X(t)−b1z(0, t)2

−b1 ‖z(t)‖2 +2b1 ˙̂q(t)
∫ 1

0
exgq(x, t)z(x, t)dx

+2b1
˙̂d(t)

∫ 1

0
exgd(x, t)z(x, t)dx+b2

(
eβ (0, t)2−‖β (t)‖2

−2 ˙̂d(t)
∫ 1

0
ex

β (x, t)dx
))

(56)

Further, applying Cauchy-Schwartz and Young inequalities
and using the inverse backstepping transformation of (40)
which is

α(x, t) =z(x, t)− (c0 + q̂(t)−1)
(

e−2ac0xX(t)

+2a
∫ x

0
e−2ac0(x−y)z(y, t)dy

)
(57)

one obtains the existence of M > 0 and M̃(b1)> 0 such that∣∣∣∣2 ˙̂q(t)
∫ 1

0
exgq(x, t)z(x, t)dx

∣∣∣∣≤ γqM̃(b1)(X(t)2 +‖z(t)‖2)

(58)∣∣∣∣2 ˙̂d(t)
∫ 1

0
exgd(x, t)z(x, t)dx

∣∣∣∣≤ γdM̃(b1)(X(t)2 +‖z(t)‖2)

(59)∣∣∣∣2 ˙̂d(t)
∫ 1

0
ex

β (x, t)dx
∣∣∣∣≤ γdM̃(b1)(X(t)2 +‖z(t)‖2 +‖β (t)‖2)

(60)

β (0, t)2 ≤M(X(t)2 + z(0, t)2) (61)

Hence, applying Young inequality, one gets

V̇1(t)≤
1

1+N(t)

(
−
(

c0− [(γq + γd)b1 + γdb2]M̃(b1)

− eb2M
)

X(t)2−
(

b1−
a2

c0
− eb2M

)
z(0, t)2

− (b1− [(γq + γd)b1 + γdb2)M̃(b1))‖z(t)‖2

−b2 ‖ω(t)‖2−b2(1− γdM̃(b1))‖β (t)‖2
)

(62)



Choosing b1 >
a2

c0
, b2 < min

{
c0
eM , 1

eM

(
b1− a2

c0

)}
and

γq + γd <min
{

c0− eb2M
(b1 +b2)M̃(b1)

,
b1

(b1 +b2)M̃(b1)

}
= γ

∗

(63)

one obtains the existence of a constant η > 0 such that

V̇1(t)≤−
η

1+N(t)

(
X(t)2 +‖z(t)‖2 +‖β (t)‖2

)
(64)

and finally that

∀t ≥ 0 , V1(t)≤V1(0) . (65)

Now, consider the functional V2 defined in (53). Taking a
time-derivative and using integration by parts and Young
inequality, one obtains

V̇2(t)≤−
1
2

V2(t)+ eω(0, t)2 +2e2 ˙̂d(t)2 (66)

Therefore, from Gronwall inequality, it follows that

V2(t)≤e−t/2V2(0)+
∫ t

0
e

s−t
2

(
eω(0,s)2 +2e2 ˙̂d(s)2

)
ds (67)

Further, using (19) and (36) and applying Young inequality,
one gets the existence of M0 > 0 such that

2eω(0,s)2 +2e ˙̂d(s)2

≤


M0

(
V1(s)+

∫ 1

0
V1(s+ x)dx+α(1/2,s)2

)
if s≤ 1

M0

(
V1(s)+

∫ 1

0
V1(s+ x)dx+V1(s−1)

)
otherwise

(68)

noticing that α(1/2,s)=W (s−1) for s≥ 1. Hence, it follows

V2(t)≤ e−t/2V2(0)

+M0

∫ 1

0
e

s−t
2

(
V1(s)+

∫ 1

0
V1(s+ x)dx+α

(
1+ s

2
,0
)2
)

ds

+M0

∫ t

1
e

s−t
2

(
V1(s)+

∫ 1

0
V1(s+ x)dx+V1(s−1)

)
ds (69)

Using (65), it therefore follows that

V2(t)≤V2(0)+6M0V1(0) (70)

Matching (65) and (70), one finally gets that

V (t)≤ (1+7M0)V (0) , t ≥ 0 (71)

2) Stability in terms of the functional Γ (23): To prove the
stability result (24), we define the intermediate functionals

V0(t) =X(t)2 +‖α(t)‖2 +‖ω(t)‖2 +‖β (t)‖2

+ q̃(t)2 + d̃(t)2 (72)

Γ0(t) =
∫ t

t−1
ut(0,s)2ds+ max

s∈[t−1,t]
‖ζ (t)‖2 + max

s∈[t−1,t]
‖ω(t)‖2

+ q̃(t)2 + d̃(t)2 (73)

We start by observing that, for s ∈ [t−1, t],

ut(0,s) =ea(q−1)(s−t+1)X(t)

+2a
∫ s−t+1

2

0
ea(q−1)(s−2x−t+1)

α(x, t)dx (74)

Therefore, using Young inequality, there exists M1 > 0 such
that, for all s ∈ [t−1, t],∫ t

t−1
ut(0,s)2ds≤M1(X(t)2 +‖α(t)‖2) (75)

Similarly, one gets, for s ∈ [t−1, t],

X(t) =e−a(q−1)(s−t+1)ut(0,s)+2a
∫ s−t+1

2

0
e−a(q−1)2x

α(x, t)dx

(76)

which gives, integrating this last expression for s between
t − 1 and t and applying Young and Cauchy-Schwartz in-
equalities, the existence of M2 > 0 such that

X(t)2 ≤M2

(∫ t

t−1
ut(0,s)2ds+‖α(t)‖2

)
(77)

Second, using Remark 1 and after some derivations, one can
observe that

2‖α(t)‖2 +‖ω(t)‖2 +‖β (t)‖2

= ‖ζ (t)‖2 +‖ζ (t−1)‖2 +‖ω(t)‖2 +‖ω(t−1)‖2 (78)

and that, for any (y1,y2) ∈ [0,1],

2‖α(t)‖2 +‖ω(t)‖2 +‖β (t)‖2

≥
∫ 1+y1

y1

[ζ (1, t + x−2)− d̂(t)+ d̂(t + x−2)]2dx

+
∫ 1+y2

y2

[ω(1, t + x−2)+ d̂(t)− d̂(t + x−2]2dx

= ‖ζ (t−1+ y1)‖2 +‖ω(t−1+ y2)‖2 (79)

Hence, from (78)–(79), it follows that

max
s∈[t−1,t]

‖ζ (s)‖2 + max
s∈[t−1,t]

‖ω(s)‖2

≤ 2‖α(t)‖2 +‖ω(t)‖2 +‖β (t)‖2 ≤
2 max

s∈[t−1,t]
‖ζ (s)‖2 +2 max

s∈[t−1,t]
‖ω(s)‖2 (80)

Further, from the backstepping transformation (40) and its
inverse (57), using Cauchy-Schwartz and Young inequalities,
one obtains the existence of strictly positive constants r1, r2,
s1 and s2 such that

‖α(t)‖2 ≤r1X(t)2 + r2 ‖z(t)‖2 (81)

‖z(t)‖2 ≤s1X(t)2 + s2 ‖α(t)‖2 (82)

and therefore the one of M3 and M4 such that
1

M4
V (t)≤V0(t)≤M3(eV (t)−1) (83)

Consequently, from (71) and gathering (75), (77), (80)
and (83), it follows that

Γ0(t)≤(M1 +2)M3(e(1+7M0)V (0)−1)

≤(M1 +2)M3(e(1+7M0)M4(M2+2)Γ0(0)−1) (84)



The stability in terms of Γ follows straightforwardly, us-
ing (6)–(7) and the inverse transformations, for s ∈ [t−1, t],

ut(x,s) =
ζ (x,s)+ω(x,s)

2
(85)

ux(x,s)− d̂(s) =
ζ (x,s)−ω(x,s)

2
(86)

C. Convergence in L2-norm

Lemma 1: Consider the closed-loop system consisting in
the plant (3)-(5), the control law (15) and the parameter
update laws (18)–(20). Then, under the conditions stated in
Theorem 1,

lim
t→∞

ut(0, t) = lim
t→∞
‖z(t)‖= lim

t→∞
‖ω(t)‖= 0 (87)

Proof: From (65), one easily gets that q̃(t), d̃(t) and
N(t) are are uniformly bounded for t ≥ 0, and therefore X(t),
‖z(t)‖ and ‖β (t)‖ are also uniformly bounded for t ≥ 0.
Consequently, so is ‖ω(t)‖ for t ≥ 1. Further, from (81),
‖α(t)‖ is also uniformly bounded for t ≥ 0 and so is ‖ζ (t)‖
from (80).

From there, applying Cauchy-Schwartz inequality to (15),
one can obtain that α(1, t) is uniformly bounded for t ≥ 0.
Further, using (30) and Remark 1, α(x, t) is also uniformly
bounded for t ≥ 2(1− x) and in particular α(1/2, t) and
α(0, t) are uniformly bounded for t ≥ 1 and t ≥ 2 respec-
tively. From (40),

z(0, t) = α(0, t)+(c0 + q̂(t)−1)X(t) (88)

and, consequently, z(0, t) is also uniformly bounded for t ≥ 2.
From there, applying Young inequality to (18)–(19), one can
obtain that ˙̂q and ˙̂d are uniformly bounded for t ≥ 2. Further,
from (42)-(46),

d
dt

X(t)2 = 2X(t)
(
− c0X(t)+a(z(0, t)+ q̃(t)X(t)− d̃(t))

)
(89)

d
dt
‖z(t)‖2 = ‖z(t)‖

(
− 1

2
z(0, t)2 +

∫ 1

0
z(x, t)

(
(q̃(t)X(t)

− d̃(t))h(x, t)+ ˙̂q(t)hq(x, t)+
˙̂d(t)hd(x, t)

)
dx
)

(90)

d
dt
‖β (t)‖2 = ‖β (t)‖

(
− (2X(t−1)−α(0, t−1)+ d̂(t))2

+β (0, t)2 + ˙̂d(t)
∫ 1

0
β (x, t)dx

)
(91)

in which β (0, t) = 2X(t) − α(0, t). Applying Cauchy-
Schwartz inequality and the previous considerations, it is
straightforward that the second terms in the previous equa-
tions are all uniformly bounded for t ≥ 3.

Finally, integrating (64) from 0 to ∞, it follows that X(t),
‖z(t)‖ and ‖β (t)‖ are square integrable. Following Barbalat
Lemma, X(t), ‖z(t)‖ and ‖β (t)‖ tend to zero as t tends to
∞. Consequently, ut(0, t)=X(t+1) and ‖ω(t)‖= ‖β (t +1)‖
also tend to zero asymptotically.

D. Pointwise convergence

Using Agmon inequality, one gets

max
x∈[0,1]

α(x, t)2 ≤α(1, t)2 +2‖α(t)‖‖αx(t)‖ (92)

in which, applying Young inequality to (15),

α(1, t)2 =W (t)2 ≤M5
(
X(t)2 +‖α(t)‖2) (93)

for some positive constant M5. Further, from (33)-(34), the
spatial-derivative of the distributed variable αx satisfies the
following equations

2αxt = αxx (94)

αx(1, t) =− ˙̂q(t)(c0 + q̂(t)−1)
(

2ae2a(q̂(t)−1)X(t)

+4a2
∫ 1

0
e2a(q̂(t)−1)(1−x)(1− x)α(x, t)dx

)
− ˙̂q(t)

(
e2a(q̂(t)−1)X(t)+2a

∫ 1

0
e2a(q̂(t)−1)(1−x)

α(x, t)dx
)

− (c0 + q̂(t)−1)
(

e2a(q̂(t)−1)(a(q−1)X(t)+aα(0, t))

+2a
(

α(1, t)− e2a(q̂(t)−1)
α(0, t)

)
+4a2(q̂(t)−1)

∫ 1

0
e2a(q̂(t)−1)(1−x)

α(x, t)dx
)

(95)

Consequently, using integration by parts, one can deduce that

d
dt

[
2
∫ 1

0
ex

αx(x, t)2dx
]
≤eαx(1, t)2−

∫ 1

0
ex

αx(x, t)2dx

(96)

and, using Gronwall inequality,

‖αx(t)‖2 ≤ e1−t/2∥∥αx(0)2∥∥+∫ t

0
e−

t−s
2 eαx(1,s)2ds (97)

Applying Young’s and Cauchy-Schwartz’s inequality to (95),
one can further obtain that αx(1, t)2 is bounded, using the
conclusions obtained in the previous section. Therefore, it
follows that ‖αx(t)‖ is bounded. Furthermore, as X(t) and
‖z(t)‖ tend to zero asymptotically from Lemma 1, ‖α(t)‖
also tends to zero as t tends to infinity and, from (93), so
does α(1, t). From (92), one concludes that maxx∈[0,1] α(x, t)2

tends to zero as t tends to infinity.
Similar arguments give the convergence of

maxx∈[0,1] β (x, t) and therefore of maxx∈[0,1] ω(x, t) =
maxx∈[0,1] β (x, t +1).

Finally, from the inverse transformations (85)-(86),
applying the triangle inequality, one can obtain that
max

x∈[0,1]
|ux(x, t)− d̂(t)| and max

x∈[0,1]
|ut(x, t)| tend to zero asymp-

totically. This concludes the proof, using (5) and (19).

VI. CONCLUSION

In this paper, we proposed an adaptive output-feedback
controller for a wave PDE in one dimension with uncertain
anti-damping dynamic boundary and actuation and measure-
ment at the opposite boundary and show the relevance of
our result for suppressing stick-slip oscillations in oil-drilling



facilities. The main interest of our approach is to require
only to measure the top boundary velocities. Extension
of our approach to fusion with a bottom velocity sensor,
transmitting its signal via the mud system flowing back to
the surface or via dedicated acoustic waves, and therefore
generating a (time-varying) transport delay [9] is a direction
of future work.
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