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a b s t r a c t

A method is presented to systematically transform a general inequality-constrained optimal control
problem (OCP) into a new equality-constrained OCP by means of saturation functions. The transformed
OCP can be treatedmore conveniently within the standard calculus of variations compared to the original
constrained OCP. In detail, state constraints are substituted by saturation functions and successively
constructed dynamical subsystems, which constitute a (dynamical) system extension. The dimension
of the subsystems corresponds to the relative degree (or order) of the respective state constraints.
These dynamical subsystems are linked to the original dynamics via algebraic coupling equations. The
approach results in a new equality-constrained OCP with extended state and input vectors. An additional
regularization term is used in the cost to regularize the new OCP with respect to the new inputs. The
regularization term has to be successively reduced to approach the original constrained solution. The
new OCP can be solved in a convenient manner, since the stationarity conditions are easily determined
and exploited. An important aspect of the saturation function formulation is that the constraints cannot
be violated during the numerical solution. The approach is illustrated for an extended version of the well-
known Goddard problem with thrust and dynamic pressure constraints and using a collocation method
for its numerical solution.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Numerical methods for the solution of optimal control prob-
lems (OCPs) can roughly be divided in two different classes. In di-
rect methods, the OCP is discretized to obtain a finite-dimensional
parameter optimization problem, see, e.g., [1–6]. Well-known ad-
vantages of the direct approach are the good domain of conver-
gence as well as the efficient handling of constraints. On the other
hand, indirect approaches are based on the calculus of variations
and require the solution of a two-point boundary value problem
(BVP), see, e.g., [7]. Indirect methods are known to show a fast nu-
merical convergence in the neighborhood of the optimal solution
and to deliver highly accurate solutions, which makes them par-
ticularly attractive for aerospace applications [8–12]. However, the
handling of inequality constraints via Pontryagin’smaximumprin-
ciple [13] is in general non-trivial, since the overall structure of the
BVP depends on the sequence between singular/nonsingular and
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unconstrained/constrained arcs (if the respective constraint is ac-
tive or not) and requires a-priori knowledge of the optimal solution
structure.

In order to avoid these problems in handling constraints, a
method has been presented in [14] to systematically incorporate
a class of state and input constraints in a new unconstrained OCP
formulation, which can be solvedwith standard unconstrained nu-
merics from indirect optimal control. By using the state constraints
as linearizing outputs, a normal form representation of the consid-
ered nonlinear system is derived. The constraint dynamics are then
substituted bymeans of saturation functions and successive differ-
entiation along the normal form cascades. This concept follows an
approach originally presented in the context of feedforward con-
trol design [15,16]. The procedure results in a new unconstrained
system representation having the same system dimension but new
state and input variables. However, the specific transformation and
replacement technique as presented in [14] is limited to a class of
state constraints withwell-defined relative degree. Thismeans, for
instance, that in case of a single-input system the approach is re-
stricted to a single state constraint.

The intention of this paper therefore is to extend the saturation
function approach to amore general class of constrained OCPs. The
state constraints are represented by smooth saturation functions
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whose arguments satisfy a differential equation determined by
successively differentiating the state constraint function up to its
relative degree, i.e. until the input appears. In this way, dynamical
subsystems in new coordinates are constructed for each state
constraint. These subsystems are coupled to the original dynamics
via equality constraints that relate their inputs to the variables
of the original system. In addition, input constraints (or mixed
state-input constraints) can also be considered by direct usage of
saturation functions.

The resulting system of differential-algebraic equations (DAE)
with extended state and input vectors is used to define a new
OCP with equality constraints that can be handled conveniently in
the calculus of variations (or alternatively with direct methods).
The necessary optimality conditions define a two-point boundary
value problem, which can be solvedwith unconstrained numerical
methods. An additional regularization term is added to the cost
in order to achieve regularity of the new OCP. The corresponding
regularization parameter has to be successively reduced during
the numerical solution of the new OCP to approach the optimal
solution of the original constrained OCP.

An intrinsic property of the saturation function approach is that
the constraints cannot be violated during the numerical solution
due to their inherent incorporation in the new OCP [17,14]. This is
particularly advantageous for the numerical initialization.

The paper is outlined as follows: Section 2 introduces the
considered class of constrained OCPs. Section 3 is devoted to the
transformation of the original constrainedOCP into a newequality-
constrained (and regularized) OCP with extended state and input
vectors. The convergence properties of the new OCP for a succes-
sively reduced regularization parameter are investigated in Sec-
tion 4. Section 5 is concerned with the solution of the new OCP
by deriving the optimality conditions from the calculus of varia-
tions. In addition, a collocationmethod is shortly introduced to nu-
merically solve the two-point BVP stemming from the optimality
conditions. Section 6 applies the method to the well-known God-
dard problem with thrust and dynamic pressure constraints and
discusses the numerical results. Section 7 concludes the paper and
gives an outlook on potential future research activities in this field.

2. Problem statement

The following general inequality-constrained optimal control
problem, called OCPu , is considered:

minimize

J(u) := ϕ(x(T ), T )+

∫ T

0
L(x, u, t)dt (1)

subject to
ẋ = f (x, u), x(0) = x0, (2)
χ(x(T ), T ) = 0, (3)

ci(x) ∈

c−

i , c
+

i


, i = 1, . . . , p, (4)

di(x, u) ∈

d−

i , d
+

i


, i = 1, . . . , q. (5)

It is assumed that the nonlinear system (2) with state x ∈ Rn, input
u ∈ Rm, and f : Rn

× Rm
→ Rn possesses a unique state trajectory

x(t) for each input trajectory u(t), such that the cost (1) can be
regarded as the functional J(u). At the end of the time interval
t ∈ [0, T ], the terminal conditions χ : Rn

× R+ → Rl are imposed
on the state x. The terminal time T in (1) and (3) may be fixed or
unspecified. The constraints (4), (5) represent state constraints and
mixed state-input constraints with interval bounds. The functions
ϕ, L, f , χ , ci, and di are assumed to be sufficiently smooth. Note that
the two-sided constraints (4) and (5) are considered for the sake of
generality. In practice, the constraints may also describe one-sided
bounds, e.g. ci(x) ≤ c+

i .
The order [7] or relative degree [18] of each state constraint
function ci(x) in (4) is defined by

∂ c(j)i
∂u

= 0, j = 1, . . . , ri − 1,
∂ c(ri)i

∂u
≠ 0, (6)

with

c(j)i (x) := Ljf ci(x), j = 1, . . . , ri − 1,

c(ri)i (x, u) := Lrif ci(x), i = 1, . . . , p.
(7)

The operator Lf denotes the Lie derivative defined by Lf ci(x) =
∂ ci
∂x f (x, u) and Ljf ci(x) = Lf L

j−1
f ci(x). Literally, the order ri

corresponds to the number of times the state constraint function
ci(x) has to be differentiated until at least one element of the input
vector u = (u1, . . . , um)

T appears explicitly.1 In addition, the
mixed state-input constraints (5) are assumed to be well-defined
with respect to u, i.e.

∂di
∂u

≠ 0, i = 1, . . . , q. (8)

The considered OCPu covers a large class of optimal control prob-
lems. Note in particular that the interval bounds of the constraints
(4), (5) actually represent two constraints for each function ci(x)
and di(x, u) in the standard notation of optimal control [13,7].

In the following, a method is demonstrated to compute solu-
tions of the inequality-constrained OCPu . Although there is no
practical obstruction to using it on problems that cannot be guar-
anteed to possess a global solution, it simplifies the exposition to
make this assumption. Therefore we formulate the following

Assumption 1. OCPu has an optimal solution u∗ (to which corre-
sponds x∗) with the optimal cost J(u∗) = J∗.

3. Saturation function approach

Within the presented approach, the original inequality-constr-
ained OCPu is transformed into a new OCP by using saturation
functions to systematically substitute the constraints (4), (5) by ad-
ditional dynamical subsystems and algebraic coupling equations.
The resulting DAE representation with extended state and input
vectors leads to a new OCPεū with equality constraints. An addi-
tional regularization term with parameter ε is used to regularize
OCPεū with respect to the introduced additional inputs.

3.1. Incorporation of state constraints

Consider in a first step the state constraints (4). The idea of the
approach is to replace ci(x) by a saturation function

ci(x) = ψi(ξi,1), i = 1, . . . , p (9)

with the new unconstrained variable ξi,1 ∈ R. To represent the
constraint, the variable ξi,1 will satisfy some well-chosen differen-
tial equation whose construction is detailed below. The saturation
functionsψi : R → (c−

i , c
+

i ) are assumed to be smooth and strictly
monotonically increasing, i.e. dψi/dξi,1 > 0∀ξi,1 ∈ R. Hence, the
limits c±

i are only reached asymptotically for ξi,1 → ±∞, see
Fig. 1.

In order to calculate the derivative c(ri)i (x, u), where the
input u appears explicitly, (9) is successively differentiated and
new coordinates ξi,j+1 are introduced for the derivatives ξ̇i,j =

1 For the sake of clarity, the dependance of c(ri)i on u has been made explicit in
(7).
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Fig. 1. Asymptotic saturation function (9) with saturation limits c±

i and coordinate
ξi,1 .

ξ̇i,j+1, j = 1, . . . , ri − 1. When c(ri)i (x, u) is reached, a new variable
vi serves as input to the final derivative ξ̇i,ri = vi. For instance, if
the state constraint ci(x) is of order ri = 2, the differentiation of (9)
leads to

c(1)i (x) = ψ ′

i ξ̇i,1, ξ̇i,1 = ξi,2,

c(2)i (x, u) = ψ ′′

i ξ
2
i,2 + ψ ′

i ξ̇i,2, ξ̇i,2 = vi
(10)

with the compact notation ψ ′

i := dψi/dξi,1 and ψ ′′

i := d2ψi/dξ 2i,1.
In the general case ri ≥ 1, the differentiations take the structure
(obtained through chain differentiation)

ci(x) = ψi(ξi,1) =: hi,1(ξi,1), i = 1, . . . , p (11a)

c(j)i (x) = γi,j(ξi,1, . . . , ξi,j)+ ψ ′

i ξi,j+1
=: hi,j+1(ξi,1, . . . , ξi,j+1), j = 1, . . . , ri − 1 (11b)

c(ri)i (x, u) = γi,ri(ξi)+ ψ ′

i vi
=: hi,ri+1(ξi, vi), (11c)

with the normal form cascades

ξ̇i,j = ξi,j+1, j = 1, . . . , ri − 1,

ξ̇i,ri = vi, i = 1, . . . , p
(12)

and the new states

ξi = (ξi,1, . . . , ξi,ri)
T, i = 1, . . . , p. (13)

The nonlinear terms γi,j in the relations (11) follow from the
previous functions hi,j−1 with γi,1(ξi,1) = 0 and

γi,j

ξi,1, . . . , ξi,j


=

j−1−
k=1

∂hi,j

∂ξi,k
ξi,k+1, j = 2, . . . , ri, (14)

which are evaluated in a cascade (chain differentiation), see also
(10). In summary, a new dynamic subsystem (12) with state
ξi = (ξi,1, . . . , ξi,ri)

T and new input vi is generated for each state
constraint (4), whereby the single normal form dynamics (12)
are coupled to the original system dynamics (2) via (11c). In the
following, these relations will be referred to using the DAE form

ξ̇i = gi(ξi, vi), ξi(0) = h−1
i (x0), (15)

0 = c(ri)i (x, u)− hi,ri+1(ξi, vi), i = 1, . . . , p, (16)

with gi := (ξi,2, . . . , ξi,ri , vi)
T as the right-hand side of (12). To

represent the constraints, the initial conditions ξi(0) are chosen to
be consistentwith x0 in (2). These initial conditions are determined
by solving the relations (11a)–(11b) for ξi,1, . . . , ξi,ri :

ξi,1 = ψ−1
i (ci(x)) =: h−1

i,1 (ci(x))

ξi,j+1 =


c(j)i (x)− γi,j(ξi,1, . . . , ξi,j)


/ψ ′

i (ξi,1)

=: h−1
i,j+1


ξi,1, . . . , ξi,j, c

(j)
i (x)


, j = 1, . . . , ri − 1.

(17)
These relations have to be evaluated successively and can be
written in the vector notation

ξi = h−1
i (x) (18)

as they appear in the initial conditions in (15). Naturally, the ini-
tial state x(0) = x0 of the system (2) must strictly satisfy the con-
straints ci(x0) ∈ (c−

i , c
+

i ), i = 1, . . . , p to ensure the existence of
the inverse saturation function ψ−1

i and to determine the initial
conditions ξi(0) in (15). The algebraic coupling equations (16) be-
tween (ξi, vi) and (x, u) represent equality constraints, which cou-
ple the dynamics (15) with (2) and ensure that the relations (11)
are satisfied.

To conclude Section 3.1, we summarize the results for the state
constraints in the following

Proposition 1. Let x with x(0) = x0 satisfy ci(x) ∈ (c−

i , c
+

i ). Then,
the variables ξi satisfying (12)with initial condition ξi(0) = ψ−1(x0)
and input vi satisfying (16), are such that ci(x) = ψi(ξi,1).

3.2. Incorporation of input constraints

In contrast to the state constrained case, the mixed state-input
constraints (5) can be directly substituted by further saturation
functions (because its order is zero)

di(x, u) = φi(wi), i = 1, . . . , q (19)

with the new unconstrained inputs wi. As in the case of ψi(vi) in
Fig. 1, the saturation functions φi : R → (d−

i , d
+

i ) are smooth and
monotonically increasing.2

As a result, the constraints (4), (5) are replaced by the dynamic
subsystems (15) and the algebraic equations (16), (19) with the
new inputs v = (v1, . . . , vp)

T and w = (w1, . . . , wq)
T, which

extend the original dynamics (2) to a DAE system, as pictured in
Fig. 2. The algebraic equations (16) and (19) represent equality
constraints which can be treated much more conveniently in
optimal control theory than the original inequality constraints (4),
(5), e.g. by adjoining them in the calculus of variations, see [7] and
Section 5.

3.3. New regularized optimal control problem

The new subsystems (15) with the equality constraints (16) and
(19) are used to define anewOCPwith the extended input and state
vectors

ūT
=


uT, vT, wT


∈ Rm+p+q,

x̄T =

xT, ξ T1 , . . . , ξ

T
p


∈ Rn+r , r =

p−
i=1

ri.
(20)

Since the original cost functional (1) is independent of v andw, an
additional regularization term3 ε(‖v‖2

+ ‖w‖
2)with parameter ε

is added to the cost J(u), which leads to the new regularized and
equality-constrained optimal control problem OCPεū
minimize

J̄(ū, ε) := J(u)+ ε

∫ T

0
‖v‖2

+ ‖w‖
2dt (21)

subject to

2 In this article, the saturation functionsψi(ξi,1) and φi(wi) are constructed with
the same formula given in (A.1) and (A.2) of the Appendix. In addition, (A.4) and
(A.5) represent one-sided saturation functions if one of the general constraints (4)
and (5) is only upper or lower bounded.
3

‖v‖ and ‖w‖ denote the Euclidean norm of the vectors v andw.
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Fig. 2. Structure of the extended DAE system (2), (15)–(16), (19) with incorporated inequality constraints (4), (5).
ẋ = f (x, u), x(0) = x0, (22)

ξ̇i = gi(ξi, vi), ξi(0) = h−1
i (x0), i = 1, . . . , p, (23)

0 = χ(x(T ), T ), (24)

0 = c(ri)i (x, u)− hi,ri+1(ξi, vi), i = 1, . . . , p, (25)

0 = di(x, u)− φi(wi), i = 1, . . . , q. (26)

The effect of the regularization term with parameter ε will be
explained in more detail in Section 5.2. In particular, it yields an
easily exploitable stationarity condition with respect to v and w.
The regularization term in (21) can also be interpreted as a penalty
term to account for unboundedness of the new inputs vi (as the ri-
th time derivative of ξi,1) andwi if the corresponding constraint in
(4) or (5) is touched.

In order to proceed, the following assumption is made:

Assumption 2. OCPεū has a bounded solution (ūε, x̄ε) for each
ε > 0.

Assumption 2 is reasonable from a practical point of view since the
penalty is also introduced to penalize the ‘‘reaching’’ of the con-
straints. Moreover, the boundedness of the variables (ξ1, . . . , ξp),
v, andw implies that the constraints (4), (5) strictly remain inside
their bounds.

In practice, OCPεū has to be successively solved with decreasing
values of the parameter ε. For ε → 0, one intuitively expects that
the regularized cost J̄(ūε, ε) converges to the optimal value J∗ and
that the original variables (uε, xε) converge to the optimal solution
(u∗, x∗) of OCPu . This point will be elaborated in the next section.

Remark 1. In certain cases, the boundedness in Assumption 2 can
be explicitly verified. For the state-constrained case, this property
is considered more deeply in [17,14] under an additional analycity
assumption on the state xε(t). In the input-constrained case, it
is shown in [19] that the saturation function approach can be
related to interior penalty methods, for which results are available
concerning the strict satisfaction of input constraints [20].

4. Investigation of convergence

This section discusses the convergence of the cost (21) of
OCPεū for ε → 0. In addition, the convergence of the original vari-
ables (uε, xε) to the optimal solution (x∗, u∗) is investigated under
a quadratic growth assumption. In the following considerations the
terminal time T is assumed to be fixed for the sake of clarity and
simplicity.

4.1. Abstract formulation

Several norms are used in the following. Besides the Euclidian
norm mentioned before, the standard norms Li(0, T ; Rb), i = 1,
2,∞ are used over the set of continuous functions a : [0, T ] → Rb

and are denoted by ‖a‖1, ‖a‖2, and ‖a‖∞.
Some further definitions and assumptions are required. Define

the set S of admissible control inputs u ∈ L∞(0, T ; Rm) which to-
gether with their (unique) states x satisfy the dynamics and initial
conditions (2), the terminal conditions (3), and the constraints (4),
(5) for all times t ∈ [0, T ]. In terms of S, OCPu can alternatively be
formulated in the form

min
u∈S

J(u) (27)

with the optimal solution J(u∗) = J∗ (see Assumption 1). In or-
der to investigate the convergence of the regularized OCPεū , con-
sider the following subset of admissible inputs u for which the
constraints (4), (5) are strictly satisfied on the open intervals:

S0 =

u ∈ S : ci(x) ∈ (c−

i , c
+

i ), i = 1, . . . , p

di(x, u) ∈ (d−

i , d
+

i ), i = 1, . . . , q

. (28)

For each admissible input u ∈ S0, the new variables ξi and vi of
OCPεū corresponding to the state constraints (4) are uniquely deter-
mined by (18), (9), and the inverse relation to (11c)

vi =
c(ri)i (x, u)− γi,ri(h

−1
i (x))

ψ ′

i (ψ
−1
i (ci(x)))

=: hv,i(x, u). (29)

Correspondingly, the new inputs wi follow from solving the rela-
tions (19) forwi:

wi = φ−1
i (di(x, u)) := hw,i(x, u). (30)

Since v = (v1, . . . , vp)
T and w = (w1, . . . , wq)

T are uniquely de-
termined from the upper relations for all u ∈ S0, the cost functional
(21) can be stated as

Ĵ(u, ε) := J(u)+ εp(u) (31)

with

p(u) :=

∫ T

0
‖hv(x, u)‖2

+ ‖hw(x, u)‖2dt (32)

and hv = (hv,1, . . . , hv,p)T, hw = (hw,1, . . . , hw,q)T. In summary,
the regularized OCPεū in (21)–(26) is equivalent to

min
u∈S0

Ĵ(u, ε), (33)

whereby Assumption 2 implies the non-emptiness of S0. Finally,
some additional assumptions are made:

Assumption 3. (a) The functional J is continuous in u for all u ∈ S.
(b) The optimal control u∗ of OCPu lies in the closure of the set S0.
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(c) The function f (being sufficiently smooth) is Lipschitz in x and
u.

A direct consequence of the above Lipschitz assumption is that two
solutions x and x′ for associated inputs u and u′ satisfy

‖x − x′
‖∞ ≤ C1‖u − u′

‖1 ∀u, u′
∈ S (34)

for some constant C1 > 0. This relation can be proved with
Gronwall’s lemma. The additional assumption that the optimal
control u∗

∈ S lies in the closure of S0 is necessary to ensure that
u∗ can be approached from within S0, see, e.g., [21] for a similar
assumption in the context of interior point methods.

4.2. Convergence results for ε → 0

Since OCP (33) has to be successively solved for decreasing
εk+1 < εk, the following lemma is of importance concerning the
non-growth of the cost (31).

Lemma 1. Let uk+1 and uk be the optimal control inputs of
OCP (33) for 0 < εk+1 < εk. Then, the following inequalities hold
for the cost functional (31):

J(uk+1) ≤ J(uk), p(uk+1) ≥ p(uk) (35a)

and

Ĵ(uk+1, εk+1) ≤ Ĵ(uk, εk). (35b)

The proof can be found in [21] and is omitted here due to the lack
of space. The following theorem concerns the convergence of the
cost Ĵ(uk, εk) using the results of Lemma 1.

Theorem 1. With the notations of Lemma 1, let {εk} be a decreasing
sequence of positive regularization parameters with limk→∞ ε

k
= 0.

Then, Ĵ(uk, εk) converges to the optimal cost

lim
k→∞

Ĵ(uk, εk) = J∗ (36a)

with

lim
k→∞

J(uk) = J∗, lim
k→∞

εkp(uk) = 0. (36b)

Proof. The proof of the theorem is adapted from [22]. Since J(u)
is continuous over S and u∗

∈ S lies in the closure of S0 (see
Assumption 3), it follows that, for any parameter δ > 0, one can
always find an admissible input uδ ∈ S0 with associated state xδ
such that

J(uδ) < J∗ + δ/2. (37a)

Select εl with εlp(uδ) < δ/2. Then, for any k > l with εk < εl and
using Lemma 1,

Ĵ(uk, εk) ≤ Ĵ(ul, εl) ≤ Ĵ(uδ, εl), (37b)

where uk and ul are the optimal solutions for εk and εl, respectively.
With (37a) and εlp(uδ) < δ/2, there exists an upper estimate on
Ĵ(uδ, εl)with

Ĵ(uδ, εl) < J∗ + δ/2 + δ/2 = J∗ + δ. (37c)

Finally, using Ĵ(uk, εk) > J(uk) ≥ J∗, (37b) and (37c) lead to the
conclusion that ∀δ > 0, ∃l such that ∀k > l, |Ĵ(uk, εk) − J∗| < δ.
This proves (36a) and additionally (36b) in view of (31). �

In order to prove convergence of the input uk and its associated
states xk, we require an additional quadratic growth condition as
given in the next theorem:
Theorem 2. Assume that (in addition to Assumptions 1–3) the cost
functional J(u) satisfies the quadratic growth property

C2‖u − u∗
‖
2
2 ≤ J(u)− J(u∗) ∀u ∈ S (38)

for some constant C2 > 0. Then, the solution (uk, xk) of OCP (33) for
the decreasing sequence {εk} with limk→∞ ε

k
= 0 converges to

(u∗, x∗) according to

lim
k→∞

‖uk
− u∗

‖2 = 0, lim
k→∞

‖xk − x∗
‖∞ = 0. (39)

Proof. Due to the results of Theorem 1, it follows from (38)
that uk converges to u∗ in L2. The convergence of xk relies on
Assumption 3(c) which leads to (34). The L1-norm in (34) can be
related to L2 in (38) bymeans ofHölder’s inequality, i.e. ‖u−u∗

‖1 ≤
√
T‖u − u∗

‖2. Hence, (34) can be written as ‖x − x∗
‖∞ ≤ C1‖u −

u∗
‖1 ≤ C1

√
T‖u− u∗

‖2, which shows the convergence of xk in L∞.
�

Remark 2. It can be shown that the quadratic growth property
(38) holds for linear system dynamics and quadratic cost function-
als. Moreover, (38) can be seen as a strong smoothness assumption
which however is clearly weaker than assuming strong convexity
(it is well known that strong convexity on a compact set implies
quadratic growth, see e.g. [23]). A simple finite-dimensional ex-
ample is the function f (x) = x2 + 10 sin2 x, where x is restricted
to the interval x ∈ [−5, 5]. This function has a global minimum
f (x∗) = 0 at x∗

= 0. Clearly, the quadratic growth property
1
2 |x − x∗

| ≤ f (x) − f (x∗) is satisfied for all x ∈ [−5, 5] although
f (x) is not convex on this interval.

Note that no statement is made in Theorem 2 about the limits
of the new variables ξ k, vk, and wk of OCPεū , since they become
unbounded if the trajectories xk and uk touch the corresponding
constraint in (4) and (5) for k → ∞. Nevertheless, the original state
xk and input uk converge to the optimal trajectories u∗ and x∗ as
stated in Theorem 2. In practice, the sequence {εk} is stopped after
a convergence criterion is satisfied, which prevents the variables
(ξ k, vk, wk) from becoming unbounded.

4.3. Summary of results

The following paragraph summarizes the results obtained so far
in a condensed manner before proceeding to Section 5:

Consider the inequality-constrained OCPu (1)–(5) with the op-
timal control u∗ lying in the closure of the set S0 defined in (28)
(also see Assumptions 1 and 3). Moreover, consider the penalized
OCPεū (21)–(26) defined by the introduction of saturation functions
and dynamic extension to integrate the original inequality con-
straints of OCPu . Under Assumption 2, OCPεū possesses a bounded
solution in the new extended coordinates ūT

= (uT, vT, wT) and
x̄T = (xT, ξ T1 , . . . , ξ

T
p ) defined in (20). This equality-constrained

OCP can readily be handled in the classical calculus of variations
(see Section 5). Moreover, OCPεū is equivalent to

min
u∈S0

J(u)+ εp(u)

defined in (31)–(33).When ε → 0, convergence of the optimal cost
of OCPεū towards J(u∗) is guaranteed by Theorem 1. If the quadratic
growth property (38) holds, Theorem2 additionally guarantees the
convergence of the trajectories towards (x∗, u∗).

5. Solution of OCPε
ū

This section focuses on the numerical solution of OCPεū . In the
first step, the first-order optimality conditions are derived, which
lead to a two-point boundary value problem (BVP). This BVP can
be solved numerically, for instance with the collocation method.
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5.1. Necessary optimality conditions

The necessary optimality conditions for OCPεū follow from the
calculus of variations. To this end, we define the Hamiltonian

H(x̄, ū, λ̄, µ̄, t) = L(x, u, t)+ ε

‖v‖2

+ ‖w‖
2

+ λTf (x, u)+

p−
i=1

ηTi gi(ξi, vi)

+

p−
i=1

µi


c(ri)i (x, u)− hi,ri+1(ξi, vi)


+

q−
i=1

νi (di(x, u)− φi(wi)) (40)

with the adjoint states λ̄T
= (λT, ηT1, . . . , η

T
p), where λ ∈ Rn and

ηi ∈ Rri are related to the dynamical subsystems (22) and (23). The
additional multipliers µ̄T

= (µT, νT) with ν ∈ Rp and µ ∈ Rq

are used to adjoin the equality constraints (25) and (26) to the
Hamiltonian (40).

An optimal solution of OCPεū has to satisfy the stationarity
conditions

∂H
∂u

=
∂ L
∂u

+ λT ∂ f
∂u

+

p−
i=1

µi
∂ c(ri)i

∂u
+

q−
i=1

νi
∂di
∂u

= 0 (41a)

∂H
∂vi

= 2εvi + ηi,ri − µiψ
′

i (ξi,1) = 0, i = 1, . . . , p (41b)

∂H
∂wi

= 2εwi − νiφ
′

i (wi) = 0, i = 1, . . . , q, (41c)

which, togetherwith the equality constraints (25)–(26), determine
the inputs ūT

= (uT, vT, wT) and the multipliers (ν, µ).
The adjoint states λ̄T

= (λT, ηT1, . . . , η
T
p) follow from the

dynamics λ̇T
= −∂H/∂x and η̇Ti = −∂H/∂ξi, which can bewritten

in more detail as

λ̇T
= −

∂ L
∂x

− λT ∂ f
∂x

−

p−
i=1

µi
∂ c(ri)i

∂x
−

q−
i=1

νi
∂di
∂x

(42a)

η̇i,1 = µi
∂hi,ri+1

∂ξi,1
, i = 1, . . . , p (42b)

η̇i,j = −ηi,j−1 + µi
∂hi,ri+1

∂ξi,j
, j = 2, . . . , ri. (42c)

The terminal conditions for λ and ηi, i = 1, . . . , p are given by

λT(T ) =
∂ϕ

∂x


T

+ κT ∂χ

∂x


T
, ηi(T ) = 0, i = 1, . . . , p (43)

with the additional (constant) multipliers κ ∈ Rl. The final condi-
tions for ηi are zero, since no terminal conditions are imposed on
the states (ξ1, . . . , ξp) of OCPεū . If the terminal time T is unspeci-
fied, the additional transversality condition

H(x̄, ū, λ̄, µ̄, t)

T = −

∂ϕ

∂t


T

− κT ∂χ

∂t


T

(44)

must be satisfied. The differential equations and boundary condi-
tions (22)–(24), (42)–(44) together with the algebraic equations
(25), (26), (41) define a two-point BVP. Its solution yields the tra-
jectories of the (extended) states x̄ε(t), λ̄ε(t) and input ūε(t), the
multipliers µ̄ε(t), and κε as well as the optimal end time T ε (if ini-
tially unspecified).
5.2. Jacobian of the algebraic equations

Some interesting properties of the saturation function formu-
lation and dynamic extension can be revealed from the Jaco-
bian of the algebraic equations (41), (25), (26) with respect to
(u, v, w,µ, ν):

F =



∂2H
∂u2

0 0

∂ c(r)

∂u

T 
∂d
∂u

T

0 2εIp 0 −Ψ ′(ξ) 0
0 0 2εIq − νTΦ ′′(w) 0 −Φ ′(w)

∂ c(r)

∂u
−Ψ ′(ξ) 0 0 0

∂d
∂u

0 −Φ ′(w) 0 0


, (45)

with the p × p and q × q unit matrices Ip and Iq, the abbreviations
c(r) = (c(r1)1 , . . . , c(rp)p )T, d = (d1, . . . , dq)T, and the matrices
Ψ ′(ξ),Φ ′(w) (andΦ ′′(w) accordingly) being defined by

Ψ ′(ξ) =

ψ
′

1 0
. . .

0 ψ ′

p

 , Φ ′(w) =

φ
′

1 0
. . .

0 φ′

q

 .
For the non-singularity of the Jacobian F that is required for

the numerical solution of the algebraic Eqs. (41), (25) and (26),
the Hamiltonian H(x̄(t), ū(t), λ̄(t), µ̄(t), t) is assumed to have a
positive definite Hessian

∂2H
∂ ū2

=

∂
2H
∂u2

0 0
0 2εIp 0
0 0 2εIq − νTΦ ′′(w)

 > 0

∀t ∈ [0, T ]. (46)

The positive definiteness of ∂2H/∂ ū2 represents a sufficient
second-order optimality condition (strengthened Legendre–
Clebsch condition) and is often implicitly assumed in optimal
control when the first-order optimality conditions are solved nu-
merically.4

The non-singularity of the Jacobian (45) can easily be shown
by means of (46) and Ψ ′(ξ) and Φ ′(w) being positive definite.
Moreover, it is obvious that the regularization termwith parameter
ε is necessary for ∂2H/∂ ū2 > 0 in (46) and that the ε-entries in
(45) avoid a rank deficiency of the second and third lines of F for
an ‘‘almost active’’ constraint ci(x) → c±

i or di(x, u) → d±

i with
ψ ′

i → 0 or φ′

i , φ
′′

i → 0, respectively.

Remark 3. A theoretically interesting option of the saturation
function approach is to use ‘‘exact’’ saturation functions for the
state constraints (4), which lead to a tangential entry and exit of
the constraints c±

i = ψi(ξ
±

i,1) at certain saturation values ξ−

i,1 and
ξ+

i,1. Then, under the standard state constraint qualification (i.e., the
gradient vectors ∂ c(ri)i /∂u of all active state constraints ci(x) being
linearly independent) the Jacobian (45) remains non-singular,
although ψ ′

i (ξi,1) ≡ 0 holds for the active state constraints. The
properties of exact saturation functions and the influence of their
order of continuity on the boundedness of the ξi-variables are
analytically investigated in [17] for the special case of a single state
constraint.

4 Note that the Hessian with respect to the original control, ∂2H/∂u2 , is always
positive definite if the system (2) and the constraints (5) are input-affine and the
cost (1) satisfies ∂2L/∂u2 > 0, e.g. for L(u) = ‖u‖2 .
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5.3. Numerical solution with collocation

An efficient way to numerically solve two-point BVPs is the
collocation method, see, e.g., [24]. In order to solve DAE-BVPs
as they arise from the optimality conditions, a collocation solver
under Matlab is used, which uses modifications of the standard
Matlab function bvp4c [25]. This solver is applicable to general
BVPs of (index 1) differential-algebraic equations (DAE)

ẋd = fd(xd, xa, t, p), (47a)
0 = fa(xd, xa, t, p), (47b)
0 = fbc(xd(t0), xd(tf ), xa(t0), xa(tf ), p) (47c)

with the differential and algebraic equations (47a), (47b) for the
dynamic and algebraic states xd(t) and xa(t) on the time interval
t ∈ [t0, tf ] and the boundary conditions (47c). Unknown parame-
ters p can additionally be considered in the DAE formulation (47).

The collocation scheme discretizes the differential equations
(47a) along a time mesh ti ∈ [t0, tf ], i = 1, . . . ,N . The resulting
discretized equations (47a), (47b) together with the boundary
conditions (47c) result in a set of nonlinear algebraic equations for
the variables xd(ti) and xa(ti), i = 1, . . . ,N , which is solved with a
damped Newton iteration scheme. If the initial guess provided by
the user is far away from the actual solution, a line search algorithm
is used to bring the numerical iterates closer to the domain of
convergence of the Newton iteration scheme. In addition, a mesh
refinement strategy is used to adapt the timemesh ti ∈ [t0, tf ], i =

1, . . . ,N and the number of grid points N in each Newton step
based on the residual along the discretized ODEs (47a).

In order to use the collocation method to solve the optimal
control problem OCPεū , the BVP (22)–(26), (42)–(44) has to be
adapted to the DAE form (47). The ODEs (47a) are given by the
system and adjoint equations in (22), (23), (42) for the dynamic
states xTd = (x̄T, λ̄T). The extended input ūT

= (uT, vT, wT) and
the multipliers µ̄T

= (νT, µT) refer to the algebraic variables
xa with (25), (26), (41) corresponding to (47b). The boundary
conditions for x̄ and λ̄ according to (22)–(24), (43) together with
the transversality condition (44) if T is unspecified constitute (47c).
The multipliers κ in the terminal conditions (43) and (44) can be
treated as unknown parameters p = κ .

6. Example — Goddard problem

A well-known benchmark problem in trajectory optimization
suggested by Goddard in 1919 [26] is tomaximize the final altitude
of a vertically ascending rocket under the influence of atmospheric
drag and gravitation. The given constraints on the thrust (input
constraint) and dynamic pressure (state constraint) as well as the
characteristic singular arc behavior of the Goddard problem make
it an ideal example to illustrate the presented approach.

6.1. Optimal control problem

The optimal control problem for the Goddard rocket subject to
thrust and dynamic pressure constraints can be stated as [27,28,
10,29]

minimize
J(u) := −h(T ) (48)
subject to

ḣ = V , V̇ =
u − D(h, V )

m
−

1
h2
, ṁ = −

u
c
, (49)

h(0) = 1, v(0) = 0, m(0) = 1, m(T ) = 0.6, (50)
Aq(h, V ) < 10, u ∈ [0, 3.5] (51)
with the altitude h from the center of Earth, the velocity V , and
the mass m of the rocket. The states (h, V ,m), the thrust u as the
control input, and the time t are normalized and dimension-free.
The drag function D(h, V ) = D0q(h, V ) in (49) is proportional to
the dynamic pressure

q(h, V ) =
1
2
ρ0V 2 exp


β(1 − h)


, (52)

that depends on the altitude h and velocity V .5
As described by the boundary conditions (50), the rocket starts

from the Earth’s surface and is initially at rest. The terminal
condition at the free end time T is imposed on the mass to account
for the consumed fuel of the rocket with respect to its initial
mass. The dynamic pressure constraint (with the reference area
A) in addition to the thrust constraint in (51) is an extension of
the original Goddard problem. It was introduced by Seywald and
Cliff [28].

6.2. Incorporation of constraints with saturation functions

The dynamic pressure constraint in (51) can be reordered and
written in the form (4)

c(h, V ) := V 2 exp

β(1 − h)


≤

20
Aρ0

= c+. (53)

The state inequality constraint (53) is of order one (i.e. r = 1), since
the input u appears in the first time derivative
c(1)(h, V ,m, u) := 2V exp


β(1 − h)


×


u − D(h, V )

m
−

1
h2

−
1
2
βV 2


. (54)

Following Section 3.1, the inequality constraint (53) is represented
by a saturation functionψ(ξ), cf. (9), and is differentiated in order
to introduce a new input v for ξ̇ :

c(h, V ) = ψ(ξ) ∈ (c−, c+) (55)

c(1)(h, V ,m, u) = ψ ′ξ̇ with ξ̇ = v. (56)
Since the reformulated pressure constraint (53) is only bounded
from above, the saturation limits forψ : R → (c−, c+) are chosen
symmetrically with c−

= −c+.
The thrust constraint in (51) is taken into account by a further

saturation function according to (19):
u = φ(w). (57)
To summarize, the inequality constraints (51) are replaced by the
newdynamics ξ̇ = v and the equality constraints in (56), (57). This
leads to the new regularized OCPεū as defined in (21)–(26) with the
extended state x̄ = (h, V ,m, ξ)T and input ū = (u, v, w)T:
minimize

J̄(ū, ε) := −h(T )+ ε

∫ T

0
v2 + w2dt (58)

subject to

ḣ = V , V̇ =
u − D(h, V )

m
−

1
h2
, ṁ = −

u
c
, (59)

h(0) = 1, V (0) = 0, m(0) = 1, m(T ) = 0.6, (60)

ξ̇ = v, ξ(0) = ψ−1(0) = 0, (61)

0 = c(1)(h, V ,m, u)− ψ ′(ξ)v, (62)

0 = u − φ(w). (63)

5 The following (normalized) values are taken from [28]: β = 500, c = 0.5,
D0ρ0 = 620, and Aρ0 = 12 400.
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Fig. 3. Optimal trajectories of the Goddard problem for decreasing regularization parameters ε.
Note that the initial condition for ξ is zero due to the symmetric
bounds c± for the saturation function in (55) and c(h(0), V (0)) = 0
with V (0) = 0.

6.3. Numerical results

The necessary optimality conditions (41)–(44) for the Goddard
problem are calculated with the computer algebra system
Mathematica and are stored as Matlab functions.6 The Goddard
problem is solved with the collocation method as described in
Section 5.3, whereby the free end time T is taken into account by
means of the time transformation

t = δτ , T = δ,
d
dt

=
1
δ

d
dτ

(64)

with the normalized time coordinate τ ∈ [0, 1]. The scaling factor
δ is treated as a free parameter p = δ in the DAE system (47) and
the new time coordinate τ replaces t ∈ [t0, tf ]with the normalized
interval boundaries t0 = 0 and tf = 1.

The initial guess for the states (h, V ,m) is a linear interpolation
between the boundary conditions in (60) and h(T ) = 1, V (T ) = 0
for the unspecified final states. The initial trajectories for ξ , λ, and
ū are zero. The free parameter δ in the time transformation (64)
is chosen to δ = 0.1, which corresponds to an initial final time
T = 0.1.

Fig. 3 shows the optimal trajectories of the states (h, V ,m)
and of the dynamic pressure constraint in (51) as well as the
original control input u(t) for the Goddard problem with different
regularization parameters ε by solving the Goddard problem with
the collocation method and successively decreasing ε from 100 to
10−10. After the initial run with ε = 100, the subsequent runs
use the previous solutions as initialization. The maximum altitude
h(T ) and the terminal time T obtained for ε = 10−10 are (both
normalized values)

h(T ) = 1.0127176, T = 0.20404872. (65)

6 In addition to the boundary conditions in (60), (61), the terminal conditions (43)
for the adjoint states and the transversality condition (44) simplify to λh(T ) = −1,
λV (T ) = 0, η(T ) = 0, and H(·)|T = 0.
The constraints (51) of the dynamic pressure and the thrust are
clearly satisfied. Particularly interesting is the singular arc of the
thrust u(t) appearing at t ≈ 0.075, which directly follows the
constrained arc of the dynamic pressure constraint. This behavior
is explained inmore detail in [28]. Although this singular arc barely
influences the final cost, it shows the applicability of the saturation
function approach and the accuracy of the collocation method for
solving the Goddard problem.

7. Conclusions

An approach has been presented to systematically transform
a given constrained optimal control problem (OCP) into a new
equality-constrained OCP by means of saturation functions. The
method accounts for the relative degree (or order) of state con-
straints by constructing dynamical subsystems which are coupled
to the original dynamics. In contrast to the original constrained
OCP, the derived equality-constrained OCP with extended state
and input vectors can be treated conveniently in the calculus of
variations. An additional regularization term is introduced in the
cost to regularize the new OCP with respect to the new input
variables. After deriving the optimality conditions, the resulting
two-point BVP can be solved numerically (e.g. with the collocation
method as used in this paper), whereby the regularization parame-
ter has to be successively reduced to approach the constrained op-
timal solution. Besides the Goddard problemused in this paper, the
applicability of the approach and the potential of the presented col-
location solver has been demonstrated for the space shuttle reen-
try problem [19], which is a benchmark problem in optimization
due to a high numerical sensitivity and the presence of input and
heating constraints.

An important aspect is that the presented method is indepen-
dent of the methodology, which is used to solve the new OCP.
Although the indirect method is used in this paper because of its
well-known accuracy and to exploit the structure of the optimality
conditions, direct optimization methods can equally be applied to
solve the resulting equality-constrained OCP. A particular advan-
tage in this context is that the constraints cannot be violated in the
new OCP formulation due to their inherent consideration by the
saturation functions. Hence, an alternative to the indirect solution
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in this paper are standard numerics from unconstrained optimiza-
tion.

A further point of interest is to investigate the impact of the
system extension on the overall convergence behavior, since the
saturation function approach naturally increases the dimension of
the overall problem. On the other hand, the additional subsystems
have a characteristic structure that can be accounted for in the
numerical solution of the extended OCP. Our own numerical
experiences as well as the numerical results in the paper show that
the increased dimensionality behaves well regarding numerical
robustness and convergence. A more rigorous investigation of this
point may be subject of future research.

Moreover, current research is spent on the further development
of the collocation solver and on the definition of a strategy to
automatically update the penalty parameter. Potential futurework
concerns the combination of direct and indirectmethods as studied
in [30–33] in order to take advantage of the larger domain of
convergence of direct methods to find a suitable initial guess for
the more accurate indirect method.
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Appendix. Choice of saturation functions

An appropriate choice for the smooth saturation function
ψi(ξi,1) ∈ (c−

i , c
+

i ) in (9) is given by

ψi(ξi,1) = c+

i −
c+

i − c−

i

1 + exp(sξi,1)
, s =

4
c+

i − c−

i
. (A.1)

The parameter s adjusts the slope at the position ξi,1 = 0 and is
chosen in (A.1) to normalize the slope at ξi,1 = 0 to ∂ψi

∂ξi,1
= 1. Note

that the saturation limits c±

i are only reached asymptotically for
ξi,1 → ±∞.

The saturation functions for the input constraints in (19) are
constructed accordingly by

φi(wi) = d+

i −
d+

i − d−

i

1 + exp(swi)
, s =

4
d+

i − d−

i
. (A.2)

Further choices for asymptotic saturation functions can be con-
structed by means of tanh-functions.

The saturation function approach can readily be applied to one-
sided state or control constraints of the form

ci(x) ≤ c+

i
ci(x) ≥ c−

i
or di(x, u) ≤ d+

i
di(x, u) ≥ d−

i .
(A.3)

A suitable choice of an upper or lower bounded saturation function
ψ+

i : R → (−∞, c+

i ) or ψ
−

i : R → (c−

i ,∞), respectively, is

ψ+

i (ξi,1) = c+

i − e−ξi,1 , ψ−

i (ξi,1) = c−

i + eξi,1 . (A.4)

Accordingly, the one-sided version of the saturation function
(A.2) for an input constraint di(x, u) ≤ d+

i or di(x, u) ≥ d−

i
becomes

φ+

i (wi) = d+

i − e−wi , φ−

i (wi) = d−

i + ewi . (A.5)

Similar to the two-sided saturation functions in (A.1) and (A.2), the

functions ψ±

i and φ±

i have the slope dψ±

i
dξi,1

= 1 and dφ±

i
dwi

= 1 at the
positions ξi,1 = 0 andwi = 0.
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