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Abstract: In this paper, a numerical solution of the optimal thermal management problem for a
parallel hybrid electric vehicle is presented by taking into account the engine temperature. This
temperature influences the fuel consumption and has a dynamical behavior which is controlled
by the engine torque. Simulation results are presented to evaluate the benefit of adding this new
state variable to the optimization problem, by comparison to the simplified problem where only
the State Of Charge (SOC) is taken into account.
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1. INTRODUCTION

Spurred by environmental requirements, economic factors
and energy-saving interests, energy management systems
(EMS) or supervisory control of hybrid electric vehicles
(HEV) has attracted much attention from the scientific
community in the last ten years (Chasse and Sciarretta
[2011], Kessels et al. [2008], Sciarretta et al. [2004], Scia-
rretta and Guzzella [2007]). The task of such controllers
is to coordinate the components of the power-train in an
efficient manner. Their objectives are to satisfy the power
request from the driver while reducing the overall energy
use and emissions.

Common EMS are based on heuristics inspired by well es-
tablished driving best practices (Chen and Salman [2005],
Delprat et al. [2003], Michel et al. [2012], Gaoua et al.
[2013]). On the other hand, optimized strategies have been
studied. They are based on the definition of a cost function
to be minimized for a dynamical system representing the
vehicle. Usually, the fuel consumption or engine emissions,
or a combination of both over a fixed time window corre-
sponding to a given driving cycle is the objective to min-
imize while the main constraints bear on battery charge-
sustaining operation (Rousseau et al. [2007], Rousseau
et al. [2008], Michel et al. [2012]). In numerous studies,
one frequent hidden assumption is that HEV system is
under thermal equilibrium. However, in practice thermal
transients are not negligible for several reason: i) the en-
gine is subject to stop-start phases, ii)engine temperature
impacts emission and fuel consumption rates, and the
efficiency of after treatments systems is relatively poor
at low catalyst temperatures. Few research programs have
recently been conducted with the aim of including thermal
states in the optimization problem formulation : there are

referred to as thermal management system (Lescot et al.
[2010], Merz et al. [2012], Serrao et al. [2011b]). The study
in (Lescot et al. [2010]) represents a first attempt to include
engine temperature dynamic in the optimization problem
and to quantify the corresponding gain in fuel consump-
tion. In (Merz et al. [2012]), a more general framework for
Pontryagin Minimum Principle (PMP) based optimization
including thermal dynamics was presented with a numeri-
cal comparison to quantify the benefit in fuel consumption
and pollutant emissions. This paper follows this approach
and considers one representative problem of EMS for a
parallel hybrid electric vehicle. In a deterministic context,
and assuming the model of the vehicle and the driving
conditions are known, we address the following question:
determine the optimal policy for the torque split between
the engine and the electric motor.

This general question is studied from the viewpoint of
model complexity. In this paper, we wish to select the right
level of modeling to optimize the accuracy/complexity
trade-off. A main motivation is that the number of state
variables greatly impacts the resolution numerical meth-
ods. Considering additional state variable increases the
level of complexity and the computational burden. It may
also jeopardize the robustness of numerical methods em-
ployed to compute the optimal trajectories.

This observation holds for dynamic programming, and
methods using PMP or direct formulations (e.g. colloca-
tion methods) (Hargraves and Paris [1987]). In this article,
a special focus is on the quantification of the gain in fuel
consumption of including engine temperature in the opti-
mization for a parallel hybrid electric vehicle. The resulting
improvement (reduction) is an upper bound on what can
be achieved by any real time implementable method.
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The paper is organized as follows: in section 2, a math-
ematical control-oriented model which takes into account
the influence of engine temperature on fuel consumption
is presented. On this basis, a PMP solution is derived in
section 3 to include the new state (engine temperature)
through the introduction of a second adjoint state besides
that adjoint to the battery State Of Charge (SOC). In
section 4, the numerical method is presented. Numerical
results are presented in section 5. In light of these findings,
we reach a conclusion on the relevance of thermal manage-
ment approach in terms of minimizing fuel consumption.

2. MATHEMATICAL CONTROL MODEL

The system considered here is a parallel hybrid-electric
vehicle (HEV). We assume that the vehicle follows a
prescribed driving cycle and we neglect all fast dynamics
taking place in the power-train.

The cost function to be minimized is the fuel consumption
over a fixed time window corresponding to a given driving
cycle of duration T . The cost is given by:

J(u) =

∫ T

0

c(u, t)e(θ)dt (1)

where u is the control variable (the engine torque), θ
is the engine temperature state and c(u, t) is the fuel
consumption rate when the engine is warm. It is given
by a quasi-steady map (as a function of the engine speed
and the engine torque), which is derived from engine tests.
The time variable accounts for the dependence of the
consumption on the engine speed, which is a set path
assumed to be tracked.

e(θ) is the correction factor of fuel consumption with
respect to θ. The correction factor is a decreasing func-
tion and is always greater or equal to one. It represents
an extra-consumption factor that takes into account the
increase of friction and, as a consequence, the increase of
fuel fuel injected per cycle at low temperatures. In the case
of warm engine, e(θ) = 1 for all θ.

The control u is constrained to belong to Uad ⊂ L∞[0, T ]
defined by

umin(t) ≤ u(t) ≤ umax(t), a.e. t ∈ [0, T ] (2)
where the bounds are determined by the driving con-
ditions, and physical limitations of the engine and the
electric motor.

Two dynamics are taken into account in the problem
formulation.

The SOC ξ is governed by :
dξ

dt
= f(u, t), ξ(0) = ξ0 (3)

where f is a non linear function of its arguments. For
more details, one can refers to (Serrao et al. [2011a]). One
operational constraint for charge-sustaining HEVs requires
that the final value of ξ should be equal to its initial value

ξ(T ) = ξ(0) (4)

The final condition (4) is justified as a way to compare
the results of different solutions by guaranteeing that they
reach the same level of battery energy. In real vehicles,

there is no need to have a fixed battery SOC at the end of
each cycle.

Strictly speaking, the function f in (3) also depends on ξ,
but we neglect this dependency as is commonly done in
the literature (Serrao et al. [2011a]).

The engine temperature satisfies the following first order
non-linear differential equation:

Ce
dθ

dt
= Pth,e(u, t, θ)−Ge(θ − θ0)− Pth,aux (5)

where Ce is an equivalent thermal capacity, Ge is an equiv-
alent thermal conductivity, θ0 is the ambient temperature,
Pth,e is the sum of friction power dissipated into heat and
thermal power transferred from the engine to the coolant,
given by a look-up table, and Pth,aux is the thermal power
drained by the cabin heater (It is considered constant). In
what follows, we shall write (5) and consider the initial
condition θ0 as

dθ

dt
= g(u, t, θ), θ(0) = θ0 (6)

One can see that equation (6) may be ignored if e in (1)
does not depend on θ, because (3) does not depend on θ.

More generally, the optimal control problem could include
some instantaneous constraints on the state variables ξ and
θ, but this would lead to a more complicated numerical
solving. Moreover, it turns out that the optimal solution
do not lead to violation of these state constraints on ξ that
we might impose. On the other hand, the constraints on
θ are not important here, because the cost function will
be independent from θ when θ ≥ θw which is generally
an admissible value. Therefore, the state constraints are
omitted here.

We can now define our optimal control problem (OCP)
(OCP ) min

u∈Uad
J(u) (7)

under the final constraint (4) and the dynamics (3,6).

3. MATHEMATICAL SOLVING

The OCP defined in (7) can be solved by numerous
methods. Classically, the solution considered here is based
on Pontryagin Minimum Principal (PMP) (Pontryagin
et al. [1962]). We define the Hamiltonian H by
H(u, t, θ, λ, µ) = c(u, t)e(θ) + λf(u, t) + µg(u, t, θ), (8)

where λ and µ are the adjoint variables associated to ξ
and θ, respectively.

For a given control u∗, the adjoint states λ(t) and µ(t) are
defined by

dλ

dt
=−∂H

∂ξ
= 0 (9)

dµ

dt
=−∂H

∂θ
= −c(u∗, t)∂e

∂θ
− µ∂g(u

∗, t, θ)

∂θ
(10)

with
µ(T ) = 0 (11)

since the final temperature is free and the final time T is
fixed. On the other hand, we have no boundary condition
on λ(T ) since the final SOC is constrained.
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The PMP states that, if u∗ is an optimal control, then,
for every t, u∗(t) minimizes the Hamiltonian in the set
defined by (2) along the optimal states and corresponding
costates:

u∗(t) ∈ arg min
u∈Uad

H(u, t, θ(t), λ(t), µ(t)) (12)

Equations (3,4,9,10,11,12) constitute a two-point bound-
ary value problem (TPBVP) that we shall denote by (=),
where the final condition λ(T ) is unknown. We can make
two preliminary observations:

• from (9) we know that λ is a constant, which is equal
to one of the unknowns of the TPBVP.
• if e does not depend on θ, then clearly µ ≡ 0 is a
solution of (10,11). Under this assumption, the Hamil-
tonian condition on the optimal control becomes

u∗1(t) ∈ arg min
u∈Uad

H1(u, t, λ) (13)

with
H1(u, t, λ) = c(u, t) + λf(u, t) (14)

This second remark is quite intuitive: if the cost does not
depend on the engine temperature, and if the dynamics of
the SOC and its final value do not depend on this temper-
ature either, then the temperature can be simply ignored
and the OCP is reduced to an optimal management of
the SOC. In this latter case, the TPBVP is reduced to
(3,4,9,13), where the unknown boundary condition is the
(final) value of the constant function λ. We shall denote
this TPBVP by (=1).

By using the Minimum Principle, we have shifted our
perspective: instead of trying to solve an OCP, we instead
try to solve a two point boundary value problem. The
original aim of this paper, as stated in the introduction,
can be reformulated as follows:

• compute a good solution candidate 1 u∗ for the opti-
mal control problem (7) by solving the TPBVP (=)
• compute an optimal control u∗1 for the simplified
problem where e is a constant (typically e ≡ 1) by
solving the TPBVP (=1)
• compare J(u∗) and J(u∗1). If u∗ is indeed a solution of
(7), then we have J(u∗) ≤ J(u∗1) because u∗1 ∈ Uad.
The question that we will study numerically on a few
examples is: how great is the difference between the
two costs? If it is small, this justifies further (including
theoretical) studies of the use of the solution of the
optimal SOC management for controlling a HEV.

4. NUMERICAL SOLVING

To assess the potential gain due to considering the thermal
transients explicitly in the Hamiltonian, an offline opti-
mization is performed to solve the TPBVP (=). We assume
that the driving cycle is known a priori.

Many numerical methods can be used. Among these are
dynamic programming, direct methods (e.g. collocation ),
and indirect methods based on PMP.

Dynamic programming is a very efficient method when
applied to systems of low dimensions. Its main advantage
is that is provides a feedback solution. On the other hand,
1 Note that the Minimum Principle is only a necessary condition.

its computational burden is relatively high. In our case,
it leads to numerical difficulties and memory managing
issues appear, due to the grid size for the state variables.

A critical aspect of the problem under consideration here
is the discontinuity of the cost function (the instantaneous
fuel consumption) about zero torque demand. Physically,
this discontinuity models that the engine is turned-off
when the torque demand is null. It discards other possible
methods requiring continuous variations with respect to
the decision variables e.g. Matlab routine fmincon. Inter-
estingly, PMP based methods do not require the continuity
with respect to the control variable and are thus not
impacted.

As the PMP based methods are not impacted, one can
employ collocation which is a popular method for solving
TPBVP. It is implemented in Matlab through the routines
bvp4c and bvp5c. It appears that solving problem (=)
with this routines leads to numerical instabilities that we
suspect to originate in the lack of smoothness of some parts
of the data.

We have thus chosen to use a specifically tailored shooting-
related method.

Classically, the idea of this algorithm is to consider the
initial conditions of the adjoint states (λ0, µ0) as unknown
variables and the vector function which associates [ξ(T )−
ξ(0)] and µ(T ) to (λ0, µ0), where (ξ, θ, λ, µ) are the solu-
tion of the following system on [0, T ]

dξ

dt
= f(u∗, t), ξ(0) = ξ0

dθ

dt
= g(u∗, t, θ), θ(0) = θ0

dλ

dt
= 0, λ(0) = λ0

dµ

dt
= −c(u∗, t)∂e

∂θ
− µ∂g(u

∗, t, θ)

∂θ
, µ(0) = µ0

(15)

where u∗ is defined by (12). In our case and due to the
absence of analytical expressions of the cost function and
some variables which are involved in the dynamics consid-
ered (3, 6), u∗ is determined as follow : u is discretized
in a finite number of possible values (a grid) satisfying
the condition (2), the Hamiltonian H, defined by (8) is
evaluated for each value and the one minimizingH is taken
as an optimal value for u. From theoretical viewpoint,
this approach is consistent with the fact that the PMP
is applicable in the case of discrete input control.

Then, the problem is recast into finding zeros of this
function from R2 into R2. This is achieved using a New-
ton’s method implemented in the popular fsolve Matlab
function. The differential equations (15) are solved using
a first order Euler method with a time step of 1 second.

Implementing such method requires special care in our
situation. In particular, the discrete nature of the set into
which the control is sought after makes it quite risky to
rely on the automatic finite difference schemes that usually
reveal very handy in others situation. If the finite difference
parameter is set too small, the estimated derivatives are
simply zero as no change is visible in the function. If it is
set too high, then the estimate is biased by second order
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terms. For these reasons, we employ the finite difference
parameter as a tuning variable and we perform our own
finite difference estimate of the gradient.

5. NUMERICAL RESULTS

The simulation results are obtained for a parallel hybrid
electric vehicle (1932 kg curb weight) equipped with one
electric motor and a 5 Ah Li-ion battery. Figure 1 describes
c(u, t), the fuel consumption map when the engine is warm.
Figure 2 describes the electric power map of the motor.

The engine parameters, which have been identified from
experimental data, are listed in table 1.
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The correction factor e(θ) for our system can be approxi-
mated by

e(θ) =

{
−aθ + b, θc ≤ θ ≤ θw
1, θ > θw

(16)

where a and b are positive constants, which have been
identified from experimental data.

Tables 2, 3 and 4 summarize the results obtained by
solving the previous optimal control problems described in
this paper for three cycles : NEDC, FUDS and FHDS in
term of fuel consumption (Table 2), satisfaction of the final
constraint (Table 3) and value of the costate associated to
the SOC (Table 4).

Table 1: Engine Parameters
Parameter Value

a 0.0084 [◦C]−1

b 1.59
Ce 105 J/kg
Ge 14.3 s−1
θw 70 ◦C
θc -30 ◦C

In what follows, the Si, i = 0 . . . 2, refer to a configuration
defined by a TPBVP (which yields a control) and a fuel
consumption formula (which yields a corresponding cost).
S0 refers to the solution of the TPBVP (=1) where e(θ)
is constant, e ≡ 1; we denote the corresponding cost by
J0. We denote by u∗1 the resulting control. S1 results
of the application of the control u∗1 to the augmented
model (5) (which includes thermal dynamics) and the cost
J which is influenced by the engine temperature. The
obtained value can be fairly compared to the solution
where the temperature is accounted for. S corresponds to
the solution of the TPBVP (=) and to the cost J , we
note u∗ its solution . Following (Merz et al. [2012]), S2

is a pseudo solution of the TPBVP (=) where we impose
µ(t) = 0, ∀t in the Hamiltonian, and where the cost is J .

Table 2: Fuel consumption in [L/100km].
Cycle S0 S1 S2 S
NEDC 4.25 4.80 5.20 4.79
FUDS 3.94 4.49 5.4 4.46
FHDS 4.98 5.34 5.71 5.32

Table 3: Constraint violation of the SOC [ξ(T )−ξ(0)]×100.
Cycle S0,1 S2 S
NEDC -0.027 1.1 0.095
FUDS 0.096 1 0.8
FHDS 0.091 0.08 -0.1

Table 4: Constant adjoint state λ associated to the SOC.
Cycle S0,1 S2 S
NEDC -0.4812 -0.6066 -0.4814
FUDS -0.5156 -0.6174 -0.5221
FHDS -0.4928 -0.5294 -0.4929

The optimal trajectories for the SOC, the temperature θ
and the adjoint state λ2 for the NEDC cycle are given by
the Figures 3, 4 and 5 respectively. The indefinite integral
of the instantaneous fuel consumption is given by Figure
6.

From Table 2, one can observe that the solution S2 is far
from the solutions S1 and S which are very close in term
of fuel consumption.

From Figure 3 and Table 3, one can see that the final State
Of Charge constraint is satisfied with an error below 1%
for the NEDC cycle by using the control calculated in S1

and S. This is also the case for the two other cycles under
consideration with a maximum error bellow 0.8% for the
FUDS cycle and less than 0.1% for the FHDS cycle.

From Table 4, one can see that the values of the adjoint
state λ for the two solution S1 and S are very close except
for the FUDS cycle where the gap between the two values
is more important. This is justified by the fact that the
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difference between the final SOC and its initial value for
this cycle is more important than in the other cases.

The optimal temperature trajectory in Figure 4 shows that
the optimal control of the solution S improves the engine
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efficiency by warming up the engine in the first phase of the
driving cycle (corresponding to the time interval [0, 800s]).
The price to pay for achieving this is an increased fuel
consumption, as seen in Figure 6. In the second phase,
the engine is warmer and more efficient and the fuel
consumption obtained by using the control u∗ is less than
when using the control u∗1. This means that the control
u∗ anticipates the influence of the engine temperature on
the fuel consumption. However, the control cannot fully
exploit the temperature dependent efficiency improvement
of the engine. This is because it has to meet the final
constraint ξ(T ) = ξ(0). Globally, this might explain why
the thermal management does not significantly improve
the fuel consumption in comparison with simply using the
control u∗1 obtained by solving the problem (=1) which
ignores the influence of the engine temperature.

Finally, the adjoint state µ in Figure 5 becomes null when
the engine is warm (θ ≥ θw). This is due to the thermal
engine efficiency and fuel consumption being independent
from θ. This reveal the consistency of the numerical
method.

6. CONCLUSION

The engine temperature is known to be one of the main
factors influencing fuel consumption. The first intuition
that we have is that, by considering the temperature
in the optimization problem, we will reduce the fuel
consumption. The numerical results we have obtained for
several cycles (NEDC, FUDS, FHDS), with significantly
different profiles, indicate that the gain is very small. These
results suggest that, perhaps, it may be sufficient to use
a temperature-free model to compute the optimal torque,
even if there is an influence of the temperature on the
fuel consumption. This conclusion is greatly influenced by
the scenario under consideration which generates implicit
upper bound on consumption saving. We are working on
identifying these performance bottleneck. On the other
hand, a general theoretical study of the influence of the
model parameters on the presented results would prove
under which general assumptions, the optimal control of
(=1) is enough to perform thermal management.
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