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SUMMARY

This paper exposes a methodology to solve state and input constrained optimal control problems for nonlin-
ear systems. In the presented ‘interior penalty’ approach, constraints are penalized in a way that guarantees
the strict interiority of the approaching solutions. This property allows one to invoke simple (without con-
straints) stationarity conditions to characterize the unknowns. A constructive choice for the penalty functions
is exhibited. The property of interiority is established, and practical guidelines for implementation are
given. A numerical benchmark example is given for illustration. © 2014 The Authors. Optimal Control
Applications and Methods published by John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper exposes a methodology allowing one to solve constrained optimal control problems
(COCP) for general multi-input multi-output system with nonlinear dynamics. This methodology
belongs to the class of interior point methods (IPMs), commonly considered in finite-dimensional
optimization, which consists in approaching the optimum by a path strictly lying inside the con-
straints. A main motivation for using this approach is that, in the interior, optimality conditions are
much easier to formulate explicitly.

The idea driving penalty methods (for both finite-dimensional optimization problems and optimal
control problems) is as follows. An augmented performance index is considered. It is constructed
as the sum of the original cost function and so-called penalty functions that have some diverging
asymptotic behavior when the constraints are approached by any tentative solution. This augmented
performance index can then be optimized in the absence of constraints, yielding a biased estimate
of the solution of the original problem. Two kinds of penalty methods exist: exterior penalty and
interior penalty (a.k.a. barrier methods). In both approaches, minimization of the augmented per-
formance index favors satisfaction of the constraints, depending on the weight of the penalty. In
exterior penalty methods, for each augmented problem, the solution usually violates the constraints.
The weight factor of the penalty should be increased so that this violation becomes sufficiently
small. When this parameter is varied, the successive solutions generate a path lying outside of the
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constraints. In IPMs, by construction, only feasible solutions are generated, but these are biased
(suboptimal). The weight factor should be set sufficiently small to reduce the bias to an accept-
able value. From a practical viewpoint, exterior methods are usually considered as more robust than
interior ones. On the other hand, interior methods are attractive because they generate only feasi-
ble solutions. This can be an interesting particularity in numerous applications of automatic control
(especially in closed-loop receding horizon approaches where satisfaction of constraints is more
important than optimality; see [1] and references therein). All penalty methods are computationally
appealing, as they yield unconstrained problems for which a vast range of highly effective algo-
rithms are available. In finite-dimensional optimization, outstanding algorithms have resulted from
the careful analysis of the choice of penalty functions and the sequence of weights. In particular, the
IPMs that are nowadays implemented in successful software packages such as KNITRO [2], OOQP
[3] have their foundations in these approaches. We refer the interested reader to [4] for a historical
perspective on this topic.

In this article, we apply similar penalty methods to solve COCPs in a spirit similar to [5–8].
COCPs represent a very handy formulation of objectives in numerous applications, especially
because constraints are very natural in problems of engineering interest. Unfortunately, these con-
straints induce some serious difficulties [9–11]. In particular, it is a well-known fact (see, e.g., [11])
that constraints bearing on state variables are difficult to characterize, as they generate both con-
strained and unconstrained arcs along the optimal trajectory. To determine optimality conditions, it
is usually necessary to know or to a priori postulate the sequence and the nature of the arcs con-
stituting the desired optimal trajectory. Active or inactive parts of the trajectory split the optimality
system in as many coupled subsets of algebraic and differential equations. Yet, not much is known
on this sequence, and this often results in a high complexity. Therefore, it is often preferred to use
a discretization-based approach to this problem, and to treat it, for example, through a collocation
method [12], as a finite-dimensional problem [13–19]. Under this finite-dimensional form, IPMs
have been applied to optimal control problems in [20–22] and [23]. This is not the path that we
explore, as we want to deal with optimal control problems under their original infinite-dimensional
representation.

There is a well-established literature on the mathematical foundations of IPMs for finite-
dimensional mathematical programming [3]. There exist also recent works in the field of exact
penalty methods for various types of optimal control problem [24–29]. These methods are of par-
ticular interest because each solution of the sequence of optimal control problem is easily computed
using classical stationarity conditions of the solution. The problem can be formulated, for example,
by parameterizing the control variables using a finite number of values and switching times (to be
determined). The constraints, on the state and control variables, and the dynamics can be expressed
in terms of the unknowns and eventually treated as penalties. After the sensitivities of the objec-
tive function with respect to these unknowns are computed, iterative descent algorithms can be used
to generate the solution. Nonsmooth methods can also be employed, depending on the smoothness
of the constraints transcription [29]. In IPMs, the main difficulty is to guarantee that the sequence
of solution is strictly interior. This point is critical because interiority is a requirement to avoid
ill-posedness and computational failure of implemented algorithms. The problem of interiority in
infinite-dimensional optimization has been addressed in [30] for input-constrained optimal control,
and in [31–33], respectively, for linear systems, single input single output nonlinear systems, and
multi-variable nonlinear systems with cubic input constraints. These contributions provide penalty
functions guaranteeing the interiority of the solutions. The purpose of this article is to propose a
synthetic view by generalizing previous historic and more recent results to nonlinear systems whose
inputs belong to a general convex set, using new elements of proof and to expose the method in a
friendly way for practitioners.

The paper is organized as follows. Section 2 contains the problem statement and sketches the
contribution. Sections 3–5 present progressively eliminate the constraints from the formulation of
the penalized problems. In Section 3, it is shown that a suitable choice of the state penalty guar-
antees that any trajectory yielding a finite cost is interior. In Section 4, a control penalty is added.
Together with the state penalty, they guarantee that any optimal control for the penalized problem
lies in the interior of the control constraints with a state that is in the interior of the state constraints.
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Capitalizing on the interiority of the previous optimal controls, Section 5 uses a so-called satura-
tion functions to transform the control constrained problem of Section 4 into a fully unconstrained
optimal control problem. Section 6 recalls the convergence of the costs, and a classic convexity argu-
ment shows the convergence of the optimal controls and states for the penalized problems. Solving
algorithms are presented in Section 7. For convenience, a practical guide or ‘cookbook’ is proposed
to help the users in deriving the equations needed for implementation. Section 8 gives a numeri-
cal application of the previous methods and algorithms by solving the Goddard problem [34] with
an atmospheric pressure constraint. The source code for this example is freely available for inter-
ested readers. Finally, Section 9 gives conclusions and perspectives. It is followed by appendices
containing several proofs that have been omitted from the main stream of the paper, and a recall (in
Appendix A) of the general convergence result by Fiacco and McCormick, which is inspirational to
the presented work.

2. NOTATIONS, PROBLEM STATEMENT, AND PRESENTATION OF THE CONTRIBUTION

The COCP that we wish to determine a solution method for in this article is to determine u� a global
solution of

min
u2U\X

"
J.u/ D

Z T

0

`.xu; u/dt

#
(1)

for the dynamics

Pxu.t/ D f .xu.t/; u.t//; x.0/ D x0 (2)

where ` W Rn�Rm 7! R is a locally Lipschitz function of its arguments, continuously differentiable
with respect to u, xu.t/ 2 Rn and u.t/ 2 Rm are the state and the control, which satisfy the
(multi-input multi-output) nonlinear dynamics (2), f is continuously differentiable, for someD > 0
kf .x; u/k 6 D.1Ckxk/; 8x 2 Rn;8u 2 C, where C is a bounded closed subset of Rm defined by

C ,
°
u D .u1; : : : ; up/ 2 Rm1 � : : : �Rmp ; p > 1; with

X
mi D m s.t. ui 2 Ci � Rmi

±
where each Ci is a bounded closed convex subset of Rmi , which has a nonempty interior containing
0 with continuously differentiable boundary.‡

The set U \ X is defined by control and state constraints that we detail below. The control
u W R 7! Rm is constrained to belong to the following set, which is closed and convex§

U , ¹u 2 L1.Œ0; T �;Rm/ s.t. u.t/ 2 C a.e. t 2 Œ0; T �º (3)

The set X is defined as follows

X ,
®
u 2 L1.Œ0; T �;Rm/ s.t. xu.t/ 2 X ad for all t 2 Œ0; T �

¯
(4)

where

Xad , ¹x 2 Rn s.t. gi .x/ 6 0; i D 1; : : : ; qº

where the gi are continuously differentiable functions ¶ R
n
7! R.

To implement IPMs, we shall naturally make the following assumption.

‡For example, this setting allows one to consider the case where C is ¹u 2 R3 s.t. u2
1
C u2

2
6 1 ; ju3j 6 1º. The

boundary of C is not differentiable, yet u 2 C can be rewritten as u D .u1; u2/, where u1 belongs to an appropriate
Euclidean disk and u2 belongs to an appropriate segment of R. Conveniently, the employed formalism covers the case
where C is a hypercube.

§A proof of this statement is given in Appendix B.
¶Observe thatXad is convex if the functions gi are convex.
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Assumption 1 (strict interiority of the initial condition)
The initial condition x0 of (2) belongs to the open set||

ı

X ad, ¹x 2 Rn s.t. gi .x/ < 0; i D 1; : : : ; qº

2.1. Summary of the contribution

The contribution of this article is an interior penalty method, which uses a so-called penalty functions
p1 and p2 and a so-called generalized saturation function � to formulate the following problem

min
�2L1.Œ0;T �;Rm/

Z T

0

`
�
x�.�/; �.�/

�
dt C �

Z T

0

p1

�
x�.�/

�
C p2.�/dt (5)

which is shown to generate, as � ! 0 a sequence of solutions converging to a solution of the
COCP defined earlier. Each solution in the sequence is relatively easy to determine as the prob-
lem (5) is unconstrained. The next sections explain how p1, p2, and � are constructed and establish
equivalence and convergence results. A tutorial summary is given in the ‘cookbook’ of Section 7.1.

3. ELIMINATION OF THE STATE CONSTRAINT BY STATE PENALTY

A first step of the methodology we propose is to penalize the state constraints.

3.1. State penalty

We introduce a state penalty function �g W .�1;C1/ ! Œ0;C1/, which satisfies the following
assumption.

Assumption 2 (Properties of the state penalty)
The function �g is positive, continuously differentiable, convex, and increasing over ¹x < 0º. It is
null over ¹x > 0º. It is singular in 0� as limx"0 �g.x/ D C1.

To address the state constraints defined in (4), the following integral state penalty is introduced,
for u 2 U

Pg.u/ D

Z T

0

qX
iD1

�g ı gi.x
u/dt

where ı denotes the function composition. To study the impact of this penalty, we introduce the
notations

X strict D

²
u 2 L1.Œ0; T �;Rm/ s.t. xu.t/ 2

ı

X ad 8t 2 Œ0; T �

³
U n X strict D

®
u 2 U s.t. u … X strict

¯
As will appear, one can determine a sufficient condition on the state penalty �g ensuring that any
control u 2 U yielding a bounded penalty Pg.u/ necessarily belongs to X strict.

Definition 1 (Proximity to a constraint)
For any constraint gi , we define the proximity to the constraint as

˛ 7! �gi .u; ˛/ D meas .¹t 2 Œ0; T � s.t. 0 > gi .x
u.t// > �˛º/ (6)

where meas.:/ is the Lebesgue measure of its argument.

||The set
ı

Xad is an open set. Moreover, if Assumption 1 holds and if the functions gi are convex, then
ı

Xad is dense in
Xad. A proof of this result can be found in Appendix C.
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Proposition 1 (Unboundedness of integral penalty)
If, for all u 2 U n X strict, the penalty function �g satisfies

lim
˛#0

�g.�˛/�gi .u; ˛/ D C1 (7)

then 8u 2 U n X strict

Pg.u/ D C1

Proof
Let u 2 UnX strict, then there exists an index i such that maxt2Œ0;T � gi .x.t// > 0. Because �g.x/ D 0
when x > 0, we have

Ii,
Z T

0

�g.gi .x.t///dt D

Z
0>gi .x.t//

�g.gi .x.t///dt

Moreover, because �g > 0, we have, for ˛ > 0,

Ii >
Z
0>gi .x.t//>�˛

�g.gi .x.t///dt , Ji .˛/

The state penalty satisfies �g > 0 on .�1; 0/; thus, Ji .˛/ is a nondecreasing positive continuous
function of ˛ > 0, which satisfies

inf
˛>0

Ji .˛/ D lim
˛#0

Ji .˛/ , Ji .0C/

Because �g is increasing and because the Lebesgue measure is right-continuous (see, e.g., [35])

J .0C/ D lim
˛#0

Z
0>gi .x.t//>�˛

�g.gi .x.t///dt

> lim
˛#0

Z
0>gi .x.t//>�˛

�g.�˛/dt D lim
˛#0

�g.�˛/�gi .u; ˛/

with �gi .u; ˛/ the Lebesgue measure defined in (6). If (7) holds, then Ji .0C/ D C1, which
implies that Ii D C1. As a consequence, Pg.u/ D C1. This concludes the proof. �

Because the measure �gi .u; ˛/, which appears in (7), involves the control u, it is handy to give a
lower bound of it when u spans U n X strict.

Proposition 2 (Lower-bound on the proximity to a constraint)
Under Assumption 1, ˛0 , �maxi .gi .x0// > 0. Then, there exists a constant � < C1 such that
for all ˛ 2 Œ0; ˛0�, for all u 2 U n X strict the measure �gi .u; ˛/ defined in (6) is lower-bounded as
follows

�gi .u; ˛/ >
˛

�

The proof is given in Appendix D.

3.2. First main result

Collecting Propositions 1 and 2, one finally obtains our first main result.

Theorem 1 (Interiority of the state)
Under Assumptions 1 and 2, if the state penalty �g is such that

lim
˛#0

˛�g.�˛/ D C1 (8)

then for every control u 2 U , the penalty value Pg.u/ is finite if and only if u 2 X strict.
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To satisfy (8), a possible choice for �g is

�g.x/ D

²
.�x/�ng ; ng > 1; for x < 0
0 otherwise

(9)

Proof
If (8) holds, then we derive from Proposition 2 that (7) holds for u 2 U nX strict. From Proposition 1,
we derive that Pg.u/ < C1 for u 2 U only if u 2 U \X strict. Conversely, if 2 U \X strict, then the
trajectories are well defined and continuous; therefore, the maximum value of gi .t/ for t 2 Œ0; T �
and any i is strictly negative and the penalty Pg.u/ is finite because �u is bounded. Finally, one
easily verifies that the penalty function defined by (9) satisfies Assumption 2 and (8). �

3.3. Introduction of a first penalized problem

Corollary 1
Under the assumptions of Theorem 1, for every � > 0, the three following problems are equivalent

min
u2U

J.u/C �Pg.u/ (10)

min
u2U\X

J.u/C �Pg.u/ (11)

min
u2U\X strict

J.u/C �Pg.u/ (12)

in the sense that they have the same set of minimizers and the same optimal values. In addition, the
penalty Pg in problem (12) is bounded for all of the controls in the given control set.

Proof
Obviously, the values of each minimum are in increasing order. However, to be optimal for prob-
lems (10) and (11), a control u must belong to U and to X strict. Therefore, the optimum for (12) is
smaller or equal to the optimum for (10), and they are all equal, and their minimizers all belong to
U \ X strict. Finally, (12) yields a finite penalty by application of Theorem 1. �

Furthering Corollary 1, we now wish to let � ! 0 in (10), or equivalently (11) or (12). However,
this requires to have a minimizing sequence for which the penalty is bounded, that is, that belongs
to U \ X strict. Therefore, we make the following assumption.

Assumption 3 (Existence of an approaching interior sequence)
Let v0 D infu2U\X J.u/. For any ! > 0, there exists s.!/ 2 U \ X strict such that v0 6 J.s.!// 6
v0 C !.

This assumption is satisfied if, for instance, U\X strict is dense in U\X for the sup norm, because
J is continuous (Proposition 13).

Proposition 3
Assume that the gi are convex, that the dynamics (2) is linear, and that U \ X strict is not empty.
Then, X and X strict are convex, and U \X strict is dense in U \X for the sup norm, and consequently,
Assumption 3 is satisfied.

Proof
With linear dynamics, for 	 2 Œ0; 1�, and two controls u and v, x�uC.1��/v D 	xu C .1 � 	/xv .
Because the gi are convex, we have

gi

�
x�uC.1��/v.t/

�
D gi.	x

u.t/C .1 � 	/xv.t// 6 	gi .xu.t//C .1 � 	/gi .xv.t//
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published by John Wiley & Sons, Ltd.

Optim. Control Appl. Meth. (2014)
DOI: 10.1002/oca



INTERIOR METHOD IN CONSTRAINED OPTIMAL CONTROL

If we take u; v 2 X , this proves that X is convex. Similarly, if u; v 2 X strict, this proves that X strict

is convex. Finally, by taking u 2 U \X strict (which is nonempty) and v 2 U \X and 	 2 .0; 1/, we
obtain

gi

�
x�uC.1��/v.t/

�
6 	gi .xu.t// < 0

Also, 	uC .1 � 	/v 2 U because U is convex and closed. By letting 	 tend to 0, this proves that
U \ X strict is dense in U \ X for the sup norm. �

Corollary 2
Assume also that for � small enough, Penalized Optimal Control Problem (POCP) (10) has at least
a minimizer u�.�/, and that Assumption 3 holds. Then,

A lim�#0 J.u
�.�// D infu2U\X J.u/

B lim�#0 �Pg.u
�.�// D 0

Proof
Because of Corollary 1, u�.�/ is also a solution of (11) and (12), and we can apply the
classic Theorem 5 by Fiacco and McCormick, recalled for convenience in Appendix, with
S D U \ X strict � R D U \ X ; observe that we have a minimizing sequence in S because of
Assumption 3. So we can apply Theorem 5 with the limit bearing on the solutions of (12). The set
of these solutions is equal to the set of the solutions of (10). This gives the desired conclusion. �

4. INTERIORITY OF THE CONTROL BY STATE AND CONTROL PENALTY

We now add a penalty bearing on the control to prevent it from touching the boundary of C.
The penalty uses a gauge function as argument. Basic properties of gauge functions necessary to
understand their relevance in the present context are recalled in the next section.

4.1. Gauge functions of convex sets

Classically, one can associate a gauge function GC to any convex set C. Under some mild assump-
tions, the gauge acts almost like a norm and reveals handy in our problem formulation. Conveniently,
the fact that a vector u belongs to the interior, boundary or exterior of C boils down to comparing
GC.u/ to 1.

Definition 2 (Gauge function [36])
The gauge function of C is the mapping GC W Rm 7! RC defined by

GC.u/ D inf ¹	 > 0 s.t. u 2 	Cº (13)

Proposition 4
The gauge function GC has the following properties

(a) GC.u/ is a well defined nonnegative real for all u
(b) There exists 0 < N < M such that

kuk

M
6 GC.u/ 6

kuk

N
8u 2 Rm (14)

In particular, GC.u/ D 0 implies u D 0
(c) The gauge is positively homogeneous, that is, GC.	u/ D 	GC.u/ for all 	 > 0
(d) GC is a strictly convex function which is locally bounded; as a consequence, it is continuous
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(e) GC has a directional derivative in the sense of Dini** at u D 0 along direction d and its value
is GC.d/

(f) GC is differentiable on Rm n ¹0º
(g) [main result for later discussions] GC.u/ < 1 if and only if u belongs to the interior of C;

GC.u/ D 1 if and only if u belongs to the boundary @C of C; GC.u/ > 1 if and only if u
belongs to the exterior of C.

These properties are proven in Appendix E.
As a consequence, u.t/ 2 C if and only if GC.ui .t// 6 1;8i and u.t/ belongs to the interior of

C if and only if GC.ui .t// < 1; 8i .

Remarks Under our assumptions on C, the gauge is a norm if and only if C is symmetric with
respect to the origin. If the origin does not belong to the interior of C, but instead another vector
u0 belongs to this interior, then we define the gauge on the variable u � u0. Finally, if C is
equivalently defined by a set of inequations cj .u/ 6 0, then (13) is equivalent to

GC.u/ D inf
°
	 > 0 s.t. cj

�u
	

�
6 0 ; 8i

±

4.2. Introduction of the control penalty function

We first introduce a generic control penalty function �u W Œ0; 1� ! Œ0;C1/ that satisfies the
following assumption

Assumption 4 (properties of the control penalty)
The function �u is such that

� �u is continuously differentiable, strictly convex, and nondecreasing
� limu"1 �u.u/ D C1
� �u.0/ D 0; �u is right continuously differentiable at u D 0 with � 0u.0/ D 0
� � 0u.u/ is locally Lipschitz at u D 0

For u 2 U , we introduce the following integral control penalty

Pu.u/ D

Z T

0

pX
iD1

�u ıGCi .ui .t//dt (15)

From the properties of the gauge functions and of �u we see that �u ı GCi .ui .t// tends to infinity
when ui .t/ tends to the boundary of Ci . Before defining a new penalized problem, let us give some
useful properties of the penalty function.

Proposition 5 (Differentiability and convexity)
For i D 1; : : : ; p, the application �u ı GCi is continuously differentiable on the interior of Ci , and
convex. As a consequence, the integrand in the integral penalty (15) is continuously differentiable
with respect to the control u in the interior of C and convex.

Proof
From Proposition 4, we know that GCi is continuously differentiable on Rmi n ¹0º because the
boundary @Ci is continuously differentiable. On the other hand, �u is continuously differentiable on
Œ0; 1/; hence, �u ıGCi is continuously differentiable on the interior of Ci minus the origin.

Because GC has bounded derivatives at u D 0 in the sense of Dini, and because
� 0u.GC.0// D � 0u.0/ D 0, we conclude that �u ı GC has a zero derivative at the origin. Moreover,
� 0u being Lipschitz (with constant K) in a neighborhood of 0, one has j� 0u ı GC.u/j 6 KjGC.u/j.

**The Dini derivative of a function f at point x 2 Rn along the direction d 2 Rn is the limit (when it exists) of
f.xChd/�f.x/

h
when h tends to 0 with positive values.
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We derive that the limit of the derivative of �u ı GC.u/ is 0 when u tends to 0. We have seen that
GCi is convex; because �u is convex, and because it is nondecreasing, then �u ıGCi is convex. This
concludes the proof. �

4.3. Second penalized problem

We are now ready to define a second penalized problem

min
u2U\X

K.u; �/ D J.u/C �
�
Pg.u/C Pu.u/

�
(16)

where Pg satisfies the assumptions of Theorem 1. Because of this, and because Pu is nonnegative
and J is bounded over U , problem (16) is equivalent to the two following problems

min
u2U\X strict

K.u; �/ (17)

min
u2U

K.u; �/ (18)

in the sense that they have the same set of minimizers and the same optimal values. Let us define

U strict D

²
u 2 U s.t. max

i
ess sup

t
GCi .ui / < 1

³
� U

We already know that any minimizer of (18) belongs to X strict. We are going to design �u such that
it also belongs to U strict.

4.4. Construction of a neighboring interior control v

To show that optimal solutions of (16) are interior, we need to construct a neighboring control vector
that are not touching the constraints. The construction of this starts with the following result.

Proposition 6
For all u 2 U \X strict, there exists ˛ > 0 such that, for all v 2 U strict satisfying ku� vkL1 6 ˛, we
have

v 2 X strict

Proof
Let u 2 U \ X strict and note �2ˇ0 D maxt2Œ0;T �;iD1;:::;q gi .xu.t//. Because u 2 U \ X strict, we
have ˇ0 > 0. From Proposition 13, and the continuity of the function g, there exists ˛N > 0 and
ƒ > 0 such that for all v 2 U strict

max
i
kui � vikL1 6 ˛N ) max

i
k gi .x

u/ � gi .x
v/ kL16 ƒ˛N

Setting ˛ D ˇ0=ƒ, one has maxi maxt2Œ0;T � gi .xv.t// 6 �ˇ0 < 0. Therefore, v 2 U strict \ X strict.
This concludes the proof. �

We now proceed to the construction of a control v 2 U strict \X strict which will be instrumental in
establishing Proposition 8.

Definition 3 (De-saturated control)
For all u 2 U \ X strict, for all ˛ > 0, we define a de-saturated control v.u; ˛/ D .v1 � � � vp/ as
follows

vi .t/ D

²
ui .t/ if GCi .ui .t// < 1 � ˛
.1 � 2˛/ui .t/ otherwise

(19)
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Proposition 7
For all u 2 U \ X strict, there exists N̨ > 0 such that, for all ˛ 2 .0; N̨ /, the de-saturated control
(19) satisfies

v 2 U strict \ X strict

As a consequence, U strict \ X strict is dense in U \ X strict in the L1 sense.

Proof
We shall use the following definitions, inspired by Definition 1

Eu.˛/ , ¹t 2 Œ0; T � s.t. 9i 6 p s.t. GCi .ui .t// > 1 � ˛º
�u.˛/ , meas.Eu.˛//

(20)

First, let us prove that, for ˛ 2 .0; 1=2/, v 2 U strict. Assume that �u.˛/ D 0; in this case, for all
i , GCi .ui .t// < 1 � ˛ almost everywhere (a.e.). Therefore, u 2 U strict \ X strict. Using (19) yields
v D u 2 U strict \ X strict.
Now, let us assume that �u.˛/ > 0. In this case, for all i ,

GCi .vi .t// < 1 � ˛ a.e. t 2 Œ0; T � nEu.˛/

GCi .vi .t// 6 .1 � 2˛/GCi .ui .t// 6 1 � 2˛ 8t 2 Eu.˛/

because for all i , ui .t/ 2 Ci a.e. Because 1 � 2˛ 2 .0; 1/, we see that GCi .vi .t// < 1 � ˛ almost
everywhere; therefore, v 2 U strict.

We now prove that v 2 X strict. Let Mi be the radius of a ball that contains Ci ; using (19), we
have kui .t/ � vi .t/k 6 2˛kui .t/k 6 2˛Mi . From Proposition 6, there exists ˛C > 0 such that if
k u�v kL16 ˛C, then v 2 U strict\X strict. Let N̨ D min¹1=2;mini ˛

C

2Mi
/º. Then, for all ˛ 2 .0; N̨ /,

we have

kui .t/ � vi .t/k 6 2˛kui .t/k 6 ˛C; i D 1; : : : ; p

Therefore, v 2 X strict. Thus, v 2 U strict \ X strict. Finally, because U is bounded in L1Œ0; T � and
˛ > 0 can be chosen arbitrarily small, we see from (19) that v can be chosen arbitrarily close to u
in L1Œ0; T �. This concludes the proof. �

4.5. Condition guaranteeing the strict interiority of the optimal control

To prove that any optimal control belongs to U strict \ X strict, it is enough to find a condition on the
penalties such that for any u 2 .U nU strict/\X strict, the de-saturated control v 2 U strict\X strict from
Definition 3 satisfies

K.v; �/ < K.u; �/

This fact contradicts the optimality of every point of .U n U strict/ \ X strict.
The following result gives an upper estimate on the difference K.v; �/ � K.u; �/. This estimate

is the sum of three terms, representing respectively an upper bound on J.v/ � J.u/, an upper
bound on the state penalty �.Pg.v/ � Pg.u// and the opposite of a lower bound on the difference
�.Pu.u/ � Pu.v//, which will be shown to be positive. In §4.6 we give constructive conditions on
the penalties that make this upper bound strictly negative when u 2 .U n U strict/ \ X strict.

Proposition 8
For any control u 2 .U nU strict/\X strict, considering the modified control v from (19), for any � > 0
one has

K.v; �/ �K.u; �/ 6 ˛
�
U` C Ug.�/ � ��

0
u.1 � 3˛/

�
�u.˛/ (21)

where �u.˛/ is defined by (20), Ul is a constant parameter and Ug.�/ depends linearly on �.
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The proof of this result proceeds by calculus, notably variational calculus on convex functions.
Details can be found in Appendix F.

Finally, using (21), the following result holds.

Proposition 9
If an optimal control u� for POCP (18) belongs to U \ X strict, and if

lim
˛"1

� 0u.˛/ D C1 (22)

then, u� 2 U strict \ X strict.

Proof
Remember that if, for some ˛ > 0, �u�.˛/ D 0, then u� 2 U strict \ X strict. We shall now assume
that �u�.˛/ > 0 for ˛ > 0 in a neighborhood of 0. If u� does not belong to U strict \ X strict, then,
using (22), for ˛ small enough one can build a control v 2 U strict\X strict such thatK.v; �/ < K.u; �/
because of (21); this contradicts the assumed optimality of u� and concludes the proof. �

4.6. Second main result

We are now ready to state our second main result.

Theorem 2 (Existence of penalties providing interior optima)
Under Assumptions 1, 2, and 4, there exists penalty functions �g and �u such that any optimal
solution u� of POCP (18) belongs to U strict \ X strict. A constructive choice is given by (9) and

�u.u/ D �u log.1 � u/ for u 2 Œ0; 1/ (23)

�u.1/ D C1 (24)

Proof
We know from Theorem 1 that using (9) as penalty �g guarantees that every optimal control u�

belongs to U \ X strict. The penalty function �u given by (23) and (24) satisfies Assumption 4.
Further, elementary computations show that � 0u.1 � ˛/ satisfies (22). Because we have shown that
u� belongs to U \ X strict, Proposition 9 applies, which proves that the proposed penalties imply
u� 2 U strict \ X strict. �

Corollary 3 (Equivalence of constrained and unconstrained problems)
Define problems

min
u2U strict\X strict

K.u; �/ (25)

min
u2U strict

K.u; �/ (26)

Under the assumptions of Theorem 2, problems (16)–(18), (25) and (26) are equivalent in the sense
that they have the same optimal values and the same set of minimizers. As a consequence, if u� is
an optimal control and H the Hamiltonian, then @H

@u
D 0 at u D u�.

Proof
We have

U strict \ X strict � U \ X strict � U \ X � U

U strict \ X strict � U strict � U
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which corresponds to inequalities on the minimum values in decreasing values. On the other hand,
with suitable penalties, any solution of (18) must belong to U strict \ X strict. This shows the equality
of the minima and of their set of minimizers. In particular, any minimizer is a solution of (26), and
hence, the ordinary calculus of variations shows that it satisfies @H

@u
D 0. �

This result proves that the proposed penalties can be used to generate a sequence of interior
solutions. This is discussed further by the following corollary

Corollary 4
Under the assumptions of Theorem 2, assume further that for � > 0 small enough, Problem (18) has
at least a solution u�.�/, and that Assumption 3 holds, then

A lim�#0 J.u
�.�// D infu2U\X J.u/

B lim�#0 �
®
Pg .u

�.�//C Pu.u
�.�//

¯
D 0

Proof
We are going to apply the classic Theorem 5 recalled in Appendix with S D U strict \ X strict �
R D U \ X . We first observe that if a control u belongs to U strict \ X strict, both penalties Pg.u/
and Pu.u/ are bounded. Because of Assumption 3, we have a minimizing sequence for J within
U \ X strict. From Proposition 7, U strict \ X strict is dense in U \ X strict when using the L1 norm.
Therefore, there exists a minimizing sequence in U strict \ X strict because of the continuity of J
(Proposition 13). Hence, we can apply Theorem 5 with the previous choice of R and S , that is, with
u�.�/ being a solution of problem (25). From Corollary 3, the set of solutions of (25) is equal to the
set of the solutions of problem (18). This gives the conclusion. �

5. REPRESENTATION OF THE CONTROL CONSTRAINT BY A CHANGE OF VARIABLES

At this stage, the fact that the optimum is necessarily interior has been established (Theorem 2).
From a numerical implementation perspective, this leads to interesting possibilities. For instance,
if C is the interval Œ�1;C1�, the change of variable � D atanh.u/ is a one-to-one mapping from
.0; 1/ into R. This change of variable allows to complete remove the constraints from the problem
formulation and to work without any bounds on the unknowns. This is particularly convenient for
implementation. This approach has been developed in [37–41]. The inverse of the aforementioned
change of variable is called a saturation function. In all these references, the constraint sets have
always been a cartesian product of intervals. We generalize the procedure here to our more general
settings of cartesian products of convex sets, and apply it to define an equivalent unconstrained
optimal control problem, well-suited for numerical implementation.

5.1. Saturation functions for convex sets

To generalize saturation functions to smooth convex sets, it is handy to first consider the mapping
 W Rm 7! Bm

k:k
.0; 1/ such that

 .�/ ,

8<
:
0 if � D 0

tanh.k�k/
�

k�k
otherwise

(27)

where Bm
k:k
.0; 1/ is the open unit ball of Rm for the norm k:k, for example, the Euclidean norm. This

mapping is a homeomorphism†† and is differentiable on Rm n ¹0º. The next proposition formulates
the generalization of saturation functions‡‡.

††whose inverse is  �1.u/ , atanh.k u k/ u
kuk

‡‡it is indeed a generalization, as we recover the usual saturation function from [42] when the convex is an interval of R.
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Figure 1. Example of a generalized saturation function �. If u belongs to int(C), then there exists � 2 Rm

such that u D �.�/ where � is defined in (28). The correspondence is one-to-one.

Proposition 10 (Generalized saturation functions)
The function � W Rm 7! int.C/ defined by

�.�/ ,

8<
:
0 if � D 0

tanh2.k�k/

GC. .�//

�

k�k
otherwise

(28)

where is defined in (27), is a homeomorphism. Moreover, this mapping is differentiable on int.C/n
¹0º. Its inverse is the function 
 W int.C/ 7! Rm defined by


.u/ ,

8<
:
0 if u D 0

atanh.GC.u//
u

kuk
otherwise

(29)

Proof
See Appendix G. Notations are illustrated in Figure 1. �

Proposition 10 implies that if u belongs to int(C), then there exists � 2 Rm such that u D �.�/ and
the correspondence is one-to-one.

5.2. Correspondence of control sets

Let

L ,
pY
iD1

L1.Œ0; T �;Rmi /

For each convex Ci , define with (28) and (29) the related functions �i (28) and 
i D ��1i defined in
(29).

Proposition 11
We have

L D
®
.
1.u1/; : : : ; 
p.up//; u 2 U strict

¯
and

U strict D
®
.�1.�1/; : : : ; �p.�p//; � 2 L

¯
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Proof
The proof is a straightforward consequence of the fact that �i and 
i are one-to-one mappings,
and that the elements u of U strict are characterized by the existence of some ˛ > 0 such that
GCi .ui .t// 6 1 � ˛ for all i and almost every t . �

5.3. Penalized problem (final version)

Finally, we define a last penalized optimal control problem

min
�2L

2
4P.�; �/ D Z T

0

`
�
x�.�/; �.�/

�
C �

2
4X
i6q

�g ı gi

�
x�.�/

�
C
X
i6p

�u ıGCi ı �i .�i /

3
5 dt

3
5
(30)

where the penalty functions are given by (9)–(23), and make the following assumption

Assumption 5
The penalized problem (18) has at least one optimal solution.

5.4. Third main result

We have the following equivalence theorem between problems (18) and (30), which is our third
main result

Theorem 3 (Equivalence of the new representation of variables)
Under the assumptions of Theorem 2 and (existence) Assumption 5, for any � > 0 POCP (18) and
POCP (30) are equivalent in the sense that

arg min
u2U

K.u; �/ D �

�
arg min

�2L
P.�; �/

	

where �.�/ denotes .�1.�1/; : : : ; �p.�p//.
As a consequence, one can solve the POCP (18) which is constrained by u 2 U by solving instead

the unconstrained POCP (30), and then apply the operator � to obtain an optimal solution for (18).

Proof
Let us consider u� 2 U a minimizer of K.:; �/, which exists by Assumption 5. We have

K
�
u�; �

�
6 K.u; �/; 8u 2 U strict

Define �� D 
.u�/ and � D 
.u/. This definition is valid because both controls belong to U strict.
Then, u� D �.��/ and u D �.�/. Therefore,

K.�.��/; �/ 6 K.�.�/; �/

or, equivalently,

P.��; �/ 6 P.�; �/

From Proposition 11, we know that 
.u/ spans L when u spans U strict. Therefore, �� is optimal for
POCP (30); this proves, incidentally, the existence of a solution to POCP (30). Because u� D �.��/,
this proves

arg min
u2U

K.u; �/ � �

�
arg min

�2L
P.�; �/
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Now, let us consider �� 2 L a minimizer of P.:; �/ (which has been proven to exist). From
Proposition 11, u� , �.��/ 2 U strict. We have

P.��; �/ 6 P.�; �/; 8� 2 L

From Proposition 11, this implies

P.
.u�/; �/ 6 P.
.u/; �/; 8u 2 U strict

that is,

K.u�; �/ 6 K.u; �/; 8u 2 U strict (31)

From Theorem 2, we know that any optimal control for K.u; �/; u 2 U must belong to U strict.
Therefore, we can substitute one of these optimal controls in place of u in (31); which proves that
u� D 
.��/ is optimal for POCP (18). Therefore,

arg min
u2U

K.u; �/ � �

�
arg min

�2L
P.�; �/

	
Finally, we have

arg min
u2U

K.u; �/ D �

�
arg min

�2L
P.�; �/

	
This concludes the proof. �

Corollary 5
Define

NJ .�/ D

Z T

0

`
�
x�.�/.t/; �.�.t//

�
dt

�.�/ D

Z T

0

X
i6q

�g ı g
�
x�.�/.t/

�
C
X
i6p

�u ıGCi ı �i .�i .t//dt

Assume that, for � small enough, problem (30) has at least a solution ��.�/. Then, under the
assumptions of Theorem 2 and Assumption 3, the following holds

A lim�#0
NJ .��.�// D infu2U\X J.u/

B lim�#0 ��.�
�.�// D 0

The corollary is a direct consequence of the equivalence Theorem 3 and of Corollary 4.

Remark 1
A theory similar to the theory developed in Section 5 can be constructed by replacing the tanh
function by any diffeomorphism D between R and .�1;C1/ which satisfies D.�x/ D �D.x/.

6. CONVERGENCE OF THE INTERIOR POINT METHODS

Corollaries 2, 4 and 5 establish the convergence of the optimal cost of each penalized problem to
the optimal cost of the original problem (1). We can now go one step further and establish, under
some extra assumptions, convergence of the control and of the state.

Assumption 6
U \ X is convex and the cost functional J of COCP (1) satisfies the strong convexity property

D k u � v k2
L2
6 J.u/C J.v/ � 2J

�
uC v

2

	
8u; v 2 U \ X (32)

for some D > 0. Moreover, problem (1) has at least one optimal control u�.
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Observe that U \ X is convex if the gi are convex and the dynamics are linear.

Theorem 4 (Convergence of the optimal state and control)
Under Assumption 6, the optimal control u� of (1) is unique. Further, under the assumptions of
Corollaries 2 and 4 hold and if, for � > 0 small enough, (10) (respectively (18)) has at least one
optimal solution u�.�/, then

lim
�#0
k u�.�/ � u� kL2D 0 (33)

lim
�#0
k xu

�.�/ � xu
�

kL1D 0 (34)

Proof
Let v 2 U \ X ; then u�Cv

2
2 U \ X . As a consequence, J.u�/ 6 J

�
u�Cv
2

�
. From (32), we derive

D k u� � v k2
L2
6 J.u�/C J.v/ � 2J.u�/ D J.v/ � J.u�/ 8v 2 U \ X (35)

Equation (35) proves that the optimum u� of problem (1) is unique. Moreover, whether it be for
problem (10) or (18)), any optimum u�.�/ belongs to U \ X . As a consequence we have

D k u� � u�.�/ k2
L2
6 J.u�.�// � J.u�/ (36)

Using Corollary 2 (respectively Corollary 4), which proves the convergence of the costs, (36)
proves the convergence (33). From Proposition 13, we derive that (34) holds. �

Corollary 6
If the conditions of Theorem 4 hold, then the solution ��.�/ of the unconstrained problem (30)
satisfies

lim
�#0
k �.��.�// � u� kL2D 0

lim
�#0
k x�.�

�.�// � xu
�

kL1D 0

This result is a direct consequence of the previous convergence Theorem 4 and of the equivalence
Theorem 3.

7. RESOLUTION ALGORITHMS AND ‘COOKBOOK’

Thanks to the equivalence results proven earlier, we know that we ‘simply’ have to solve Prob-
lem (30). This will generate a solution u�.�/, and one will gradually reduce � to approach §§ the
solution of COCP (1).

This section explains how this can be done, what are the main difficulties that can be encountered,
and what are the theoretical flexibilities one can use to simplify implementation.

§§Some remarks can be made on this generated sequence. Because, one has no estimate on the difference J.u�.�// �
J.u�/, it is necessary to explore the values of the cost and of the control as we solve the penalized problems for a
decreasing sequence of �. Most solving algorithms used to minimize the penalized costs require some initial value. It
makes sense to use the output of the solving algorithm for the previous � as an initial parameter for the current �. If
the two values of � are close, it is a safe bet to say that the initial guess will be a good one. On the other hand, having
close values for the � increases the number of penalized problems to be solved for a given range of �. Last but not the
least, it is generally required to provide an trajectory at the beginning of the iterative procedure that at least belongs to
Xad (satisfying the differential system may not be necessary at the initialization).
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In theory, one can solve (30) using any of the classic tools of optimal control (i) dynamic program-
ming (which we leave away from the discussion due to its relatively poor tractability in dimensions
superior to 4–5), (ii) direct methods a.k.a. collocation methods, (iii) indirect methods.

In direct methods, the integrand of the cost is considered as the dynamics of an augmented state
and the goal is to minimize the final value of this extra state. A collocation method is used to
discretize the differential system in time by replacing the state and control by finite elements. The
original problem is approximatively solved by solving this finite-dimensional optimization problem
under the constraint that the dynamics are satisfied at the mesh points. A more detailed discussion on
the use of direct methods in this framework with numerical illustrations can be found in [43][chapter
I]. These methods are relatively fast and robust to initialization, but may reveal heavy when a high
level of accuracy is desired.

In indirect methods, the conditions of the Pontryagin Minimum Principle [44] are exploited. Here,
the minimizer of the Hamiltonian of (30) must satisfy @H�

@�
D 0, where � is the control variable after

the change of variable. The use of the function � may complicate the solving of the equation. In
fact, it is not the case as is now discussed.

The Hamiltonian is

H�.x; �; p/ D `.x; �.�//C �

2
4X
i6q

�g ı gi .x/C
X
i6p

�u ıGCi ı �i .�i /

3
5C pT f .x; �.�// (37)

where � is defined by (28). If we compare it to the Hamiltonian Hu of the original problem (1),
we obtain H�.x; �; p/ D Hu.x; �.�/; p/. From Theorem 2, we know that the optimal control ��

satisfies

@H�

@�
.x; ��; p/ D

@Hu

@u

�
x; �.��/; p

� d�
d�
.��/ D 0 (38)

Because � is invertible, d�
d�

has full rank, and (38) is equivalent to

@Hu

@u

�
x; �.��/; p

�
D 0

or specifically,

@`

@u
.x; �.��//C �

X
i6p

� 0u
�
GCi .�i .�

�
i //
� dGCi
dui

�
�i .�

�
i /
�
C pT

@f

@u
.�.��// D 0 (39)

We shall assume that (39) has a unique solution ��.x; p/. Then, the two point boundary value
problem (TBVP) for (30) has the dynamics

dx

dt
D f .x; �.��// ; x.0/ D x0 (40)

dp

dt
D �

�
@`

@x

�
x; �.��/

�	T
� �

X
i6q

� 0g.gi .x//

�
dgi

dx

	T
�

�
@f

@x

�
x; �.��/

�	T
p ; p.T / D 0

(41)

A point worth mentioning is that the stationarity (39) has to be solved simultaneously to the two
differential (40) and (41). Therefore, it is of the highest interest that this equation be easy to solve;
ideally, we would have a closed form for its solution. Our only degree of freedom here lies in the
choice of �u, or, rather, of � 0u. The thing to attempt is to find a function � 0u such that

(a) one can prove that �u ,
R u>0
0

� 0u.v/dv satisfies the conditions of Theorem 2; this function
does not need to be actually computed. Indeed, condition (22) of Proposition 9 only bears of the
derivative � 0u. By the integral construction previously mentioned, �u is continuously differen-
tiable, strictly convex and nondecreasing if � 0u is continuous, increasing and nonnegative. The
only point that remains to check is that the indefinite integral tends to C1 when u tends to 1.
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(b) Equation (39) has a unique solution �� with �.��/ being easily computable. The existence of
�� is essential because it guarantees that u D �.��/ belongs to the interior of C. An attractive
possibility is to design � 0u so that the unique �� solution of (39) can be expressed in closed
form with respect to �, x and p.

Observe that (40) and (41) do not require any knowledge of �� but rather of �.��/, and that �u,
nor any of its derivatives, does not appear in (40) and (41). Therefore, satisfying conditions a) and
b) is an efficient way of expliciting all the terms in the TBVP (40) and (41). Such a method is
implemented and explicited in the numerical example of Section 8.

Then, a solving algorithm can be described as follows

� Step 1: Initialize the continuous functions x�.�/.t/ and p.t/ such that the initial values satisfy
gi .x

�.�/.t// < 0 for all t 2 Œ0; T �. Define a decreasing sequence �i > 0, i D 0; : : : ; N and
set � D �0. Note that x�.�/.t/ and p.t/ need not satisfy any differential equation at this stage,
even if it is better if they do.
� Step 2: Let H�.x; �; p/ the Hamiltonian (37). Solve the 2n differential equations

dx

dt
D f

�
x; �

�
���
��
; x.0/ D x0

dp

dt
D �

@H�

@x

�
x; �

�
���
�
; p
�
; p.T / D 0

Here ��� is the solution of the stationarity equation

@H�

@�

�
x; ��� ; p

�
D 0

This can be done in Matlab by using the routines bvp5c or bvp4c (see [45]).
� Step 3: If � D �N , stop. Else decrease �, initialize x�.�/.t/ and p.t/ with the solutions found

at Step 2 and restart at Step 2.

This algorithm is detailed for Matlab in Appendix H and illustrated on a numerical example in
Section 8. Other implementations, using, for example, [46] are also possible.

7.1. How-to guide ‘cookbook’

Below, we give a synthetic view for the practitioners of the several steps needed to apply the
presented method. It will be illustrated on a particular example in the next section.

COOKBOOK

Input: Consider a COCP (2)–(3) under the constraints u 2 U \ X (3)–(4)

Step 1: Choose ng > 1 and define �g D

²
.�x/�ng>1 for x < 0
0 for x > 0

Step 2: Determine the gauge function GCi of each Ci defined in (13) and
constitute the generalized saturation functions � according to (27)–(28).
For example, if u must belong to Œa; b�, then pick:
GŒ�1;1� D j:j, �.�/ D tanh

�
2�
b�a

�
and u D b�a

2
.�.�/C 1/C a.

Step 3: Constitute the Hamiltonian H� (37) and, therein, pick � 0u such that
the condition @H�

@�
D 0 is easy to solve with respect to the variable �.

(Step 3’:) For mathematical consistency, check that limu"1 �
0
u.u/ D C1

and that � 0.0/ D 0, limu"1 �u.u/ D C1.

Step 4: Solve the TBVP giving the solution of the POCP (30) for decreasing values of �.
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8. NUMERICAL ILLUSTRATION: GODDARD’S PROBLEM

The classical Goddard problem presented in 1919 [34] concerns maximizing the final altitude of
a rocket launched in vertical direction. The problem has become a benchmark example in optimal
control due to a characteristic singular arc behavior in connection with a relatively simple model
structure, which makes the Goddard rocket an ideal object of study, see [38, 47].

8.1. Model equations and optimal control problem

8.1.1. Model equations. The equations of motion of the rocket are given by the ordinary differential
equations

Ph D v (42)

Pv D
u �D.h; v/

m
�
1

h2
(43)

Pm D �
u

c
(44)

with the altitude h from the center of Earth, the velocity v, and the massm as the mass of the rocket.
The states h, v, m, the thrust u as the input of the system, and the time t are commonly normalized
and dimension free. The drag function D.h; v/ from the velocity dynamics is given by

D.h; v/ D q.h; v/
CDA

m0g
(45)

as a function of the Earth’s gravitational acceleration g and the dynamic pressure

q.h; v/ D
1

2
�0v

2eˇ.1�h/ (46)

that depends on the altitude h and the velocity v. The constants in the model equations are

CD drag coefficient,�0 air density at sea level;

A reference area;ˇ density decay rate;

m0 initial mass;c exhaust velocity

The following values are taken from [38, 48]:

ˇ D 500; c D 0:5;
�0CDA

m0g
D 620

8.1.2. Optimal control problem. The optimal control problem is the following:

min
u
�h.T /

under the dynamics (42)–(44) and the following constraints

u.t/ 2 Œ0I 3:5� a.e. t 2 Œ0; T �

q.h.t/; v.t// 6 10 8t 2 Œ0; T �

where the final time T is a free parameter. Let us reformulate the problem as a fixed horizon optimal
control problem. To do so we make the following change of variable � D t

T
and we have the

following augmented dynamics:
Ph D T v

Pv D T



u �D.h; v/

m
�
1

h2

�

Pm D �T
u

c
PT D 0
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and the optimal control problem becomes:

min
u
�

Z 1

0

T vdt

under the aforementioned augmented dynamics and the following constraints:

u.t/ 2 Œ0; 3:5� a.e. t 2 Œ0; 1�

q.h.t/; v.t// 6 10 8t 2 Œ0; 1�

Observe that u is constrained to belong to a convex set having the origin at its boundary. We now
define �.�/ by

�.�/ D tanh

�
2�

3:5

	

and

u.�/ D
3:5

2
.�.�/C 1/

which is a one to one mapping from R into the interior .0; 3:5/ of the admissible control set. We
define our control penalty function by

�u ıGŒ�1;1�.�.�// D �u ıGŒ�1;1�

�
tanh

�
2�

3:5

		

The Hamiltonian of the unconstrained POCP corresponding to this problem is the following:

H�.h; v;m; T; �; ph; pv; pm; pT / , T


�v C phv C pv



u.�/ �D.h; v/

m
�
1

h2

�
� pm

u.�/

c

�
C �

�
�u ıGŒ�1;1� ı �.�/C �g.q.h; v/ � 10/

�
The TBVP consists in solving the followings ODEs

Ph D T v Pv D T
h
u.��/�D.h;v/

m
� 1
h2

i
Pm D �T u.��/

c
PT D 0

Pph D �
@H�
@h

Ppv D �
@H�
@v

Ppm D �
@H�
@m

PpT D �
@H�
@T

h.0/ D 1 v.0/ D 0 m.0/ D 1 m.1/ D 0:6
ph.1/ D 0 pv.1/ D 0 pT .0/ D 0 pT .1/ D 0

where �� is solution of @H�
@�
D 0. Observe that GŒ�1;1�.u/ D juj. Thus

�u ıGŒ�1;1�.�.�// D �u.j�.�/j/

where �u W Œ0; 1/ 7! RC. Therefore, determining �u is equivalent to determining �u.�.�// where
�u W .�1; 1/ 7! RC is a symmetric function. Taking this parameterization makes the control
penalization differentiable with respect to � and we have

@H�

@�
D T



pv
u0.�/

m
� pm

u0.�/

c

�
C �� 0u.�.�//�

0.�/

that is

3:5

2



pv
�0.�/

m
� pm

�0.�/

c

�
C �� 0u.�.�//�

0.�/
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Therefore, �� is solution of

T
hpv
m
�
pm

c

i
C �

2

3:5
� 0u.�.�// D 0 (47)

From Lemma 9 and the symmetry of �u we know that the solution are interior if � 0u is a bijective
increasing mapping from .�1; 1/ to R. Moreover �.�/ being a increasing bijective mapping from
R to (-1,1), one can take the following parameterization of the control penalty:

2

3:5
� 0u.�.�// , sinh.�/ (48)

which is a bijective increasing mapping from R to R. Specifically, we have

� 0u

�
tanh

�
2�

3:5

		
D
3:5

2
sinh.�/ (49)

But the inverse function of y D tanh.x/ for x 2 .�1;C1/ is x D 1
2

log
�
1Cy
1�y

�
. Hence, (49) is

equivalent to

� 0u.w/ D
3:5

4

 �
w C 1

w � 1

	 3:5
4

�

�
w � 1

w C 1

	 3:5
4

!
; �.0/ D 0 ; w 2 .�1;C1/ (50)

which is a simple quadrature. It can be solved numerically and we can check that �u has the desired
properties that make sure that the optimal control u must be interior, in particular, when x tends to
1, log.�u.x//=.� log.x�1// increases; it reaches value 0.0762 at x D 1�10�14, which means that
�u.x/ �

1
.1�x/0:0762

at this point.. We see that in this example we have been able to implement the
points a) and b) described in Section 7 when studying the solving of the stationarity (39).

Figure 2. Histories of optimal altitude for decreasing values of �.

Figure 3. Histories of optimal thrust for decreasing values of �.
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Equation (47) then has an analytical solution:

�� D sinh�1
�
�
T

�

�pv
m
�
pm

c

�	

The problem solving is initialized with constant values of the variables as follows:

h.t/ D 1 v.t/ D 0:2 m.t/ D 1 T D 0:5
ph.t/ D 0 pv.t/ D 1 pm.t/ D 0 pT .t/ D 0

The sequence .�n/ is initialized with �0 D 10�2, the parameter ng from 9 is set at ng D 1:1.
To solve the problem we use the MATLAB software bvp5c. The source for this example is avail-
able at [49]. Other numerical examples, notably with a two dimensional convex control set, can be
found in [43].

Figure 4. Histories of optimal dynamic pressure for decreasing values of �.

Figure 5. Histories of optimal velocity for decreasing values of �.

Figure 6. Histories of optimal mass for decreasing values of �.
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8.2. Results

From Figures 2 to 6 histories of state variables, thrust and state constraints are given for decreas-
ing values of the parameter �. One can see that these solutions are similar to those given in [38].
Moreover, the optimal final time and the optimal value of the criterion are the following:

T D 0:20405546 I h.T / D 1:01271747

9. CONCLUSION

We have constructively exhibited three classes of penalized optimal control problems whose optimal
costs converge to the optimal control of a given optimal control problem with state and control con-
straints. Under classical convexity assumptions, we also have convergence of the control and state
toward the optimal control and state of the original problem.

A notable feature of all of these penalized problems is that the state penalty is sufficient to guar-
antee that the state constraints are strictly satisfied; thus they do not need to be specified in the penal-
ized problem. By adding a control penalty, we ensure that the second problem has an optimal control
which is in the interior of its constraint set; therefore, it must satisfy a stationarity condition on the
Hamiltonian. By making the most of this interiority property, we can finally operate a invertible
change of variable on the control which defines an unconstrained penalized optimal control prob-
lem. Solving this unconstrained problem and recovering the original control by the inverse transform
yields convergence of the cost and, under suitable assumptions, of the control.

Finally, we have observed on all of our numerical examples that the co-states exhibit a conver-
gent behavior; moreover, singularities appear gradually at the points where the theory predicts they
should appear, typically, entry and exit points of singular arcs. Proving the convergence of the co-
states toward the co-states of the original problem is a challenging task. If it was achieved, these
methods would provide an automatic method for computing the co-states and the location of their
singularities in the original problem.

APPENDIX A: RECALL ON INTERIOR POINT METHODS

A.1. A result by Fiacco and McCormick

We recall a seminal result originally published in [50, 51] because of its general interest in the
presented context and the simplicity of its proof. The interior methods are based on this result. We
consider an abstract control setE with two subsetsR and S , on which a functional J is defined, with
values in R. We wish to minimize J over the set R. This task may prove to be too difficult as-is, and
instead, one can choose to solve a sequence of (easier) problems indexed by a positive parameter �

min
u2S

J.u/C �G.u/ (51)

where G is defined on S (defined later-on) with nonnegative values in R.

Theorem 5 (Fiacco, McCormick)
We assume that problem (51) admits at least a minimizer u�.�/ that belongs to R \ S . Let v0 D
infu2R J.u/. We assume that v0 is finite and that there exists a minimizing sequence in S for which
J converges to v0, that is, for any ! > 0 there exists s.!/ 2 S such that v0 6 J.s.!// 6 v0 C !.
Then

A lim�#0 J.u
�.�// D v0 D infu2R J.u/

B lim�#0 �G.u
�.�// D 0

Proof: (inspired from [50, 51])
Let ! > 0 an arbitrary small number , and define �1 D !=G.s.!//, (if G.s.!// D 0, we take
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�1 D 1). Then we have

J.s.!//C �1G.s.!// 6 v0 C 2!

Consider now any � such that 0 < � 6 �1. We have the following inequalities

v0 6 J.u�.�//C �G.u�.�//
D min

u2S
J.u/C �G.u/

6 J.s.!//C �G.s.!//
6 J.s.!//C �1G.s.!//
6 v0 C 2!

This proves that lim�#0 J.u
�.�// C �G.u�.�// D v0. Because G is nonnegative and J.u�.�// is

lower bounded by v0, this proves the limits A and B in the theorem. �

Monotonicity For the sake of completeness, we mention another result that can be found in [50]; a
detailed proof of it can be found in [40].

Proposition 12
J.u�.�// decreases when � decreases, and G.u�.�// increases when � decreases.

A.2. Interior point methods

Without giving details on the relevant topology, IPMs take for S the interior of the set R, and we
have S � R. If, for instance, E is a Hilbert space and if J C �G has a minimum in the open set
S , then it is characterized by the conditions of a free extremum, which are much simpler to solve
than the optimality conditions for the original problem. The challenge is to design the penalty G
such that the penalized problem (51) reaches a minimum on the open set S . This is, in general,
achieved by using suitable penalties that tends to C1 when u tends to the boundary of R. The
second assumption is that the infimum of J over R can be reached by elements of S , that is, the
interior of S . This can be achieved by assuming that R is convex.

In these settings, Theorem 5 proves the convergence of J.u�.�// toward the optimal value v0.
The convergence of u�.�/ toward a minimizer of J over R can be then proven by arguments totally
unrelated to the IPM, typically by using convex analysis.

APPENDIX B: CONVEXITY OF THE SET C

C is convex, so U is convex. Let us prove that U is closed. To simplify the proof, we shall use the
gauge function on C; the properties of gauge functions are detailed in Section 4.1 and are quite
general and independent of the other results presented in this paper. If GC is the gauge function of
C, it is continuous and a vector u belongs to C if and only if GC.u/ 6 1. For u 2 L1Œ0; T �, define

G1C .u/ D sup esst2Œ0;T �GC.u.t//

Then, clearly u 2 U if and only if G1C .u/ 6 1. Moreover, it is easy to check that G1C is continuous
for the sup norm. This proves that U is closed for the sup norm.

APPENDIX C: PROPERTIES OF
ı

XAD

The set of points that verify gi .x/ < 0 is open because gi is continuous. As a consequence,
ı

X ad is
a finite intersection of open sets and is thus open.
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To prove the density result, consider x 2 Xad and let ˛ 2 .0; 1/. Because gi is convex and

x0 2
ı

X ad, we have

gi .˛x0 C .1 � ˛/x/ 6 ˛gi .x0/C .1 � ˛/gi .x/ 6 ˛gi .x0/ < 0

By letting ˛ tend to 0, this proves that
ı

X ad is dense in Xad.

Proposition 13
For all u 2 U , the maximal solution xu of the dynamics (2) is defined on Œ0; T � and xu is bounded by
a constant that depends only on x0 andD. Moreover, the mapping that maps u 2 U to the trajectory
xu 2 C 0.Œ0; T �;Rn/ is Lipschitz when U is equipped with the L1 or L1 norm. As a consequence,
the functional J.u/ is Lipschitz over U when equipped with one of these norms.

Proof
Consider xu as the maximal solution of (2). The use of the Gronwall Lemma ([52] p. 651) for
the dynamics shows that xu is bounded on its interval of definition. Because f is continuously
differentiable, the boundedness of u 2 U and of xu implies that the derivatives of f are bounded
when u 2 U . Consider now two controls u and v in U . Using the Gronwall Lemma on xu � xv

shows that its dynamics is sub-linear with respect to xu�xv and u� v with a zero initial condition,
which proves the regularity of xu with respect to u, both in the L1 and L1 norms. �

APPENDIX D: PROOF OF PROPOSITION 2

The result is trivial if ˛ D 0. We now assume ˛ > 0. From Proposition 13 given earlier in
Appendix C and from the continuous differentiability of the gi , there exists a constant � such that,
for all u 2 U and any s; t in Œ0; T �

jgi .x
u.t// � gi .x

u.s//j 6 �jt � sj (52)

Let ˛ 2 .0; ˛0� and u 2 U n X strict. Then, there exists an index i for which gi .xu/ reaches 0 in
Œ0; T �. Remember that gi .x0/ D �˛0 < 0. Denote by t2 the first instant at which gi .xu/ D 0 and
t1 D max¹s < t2 s.t. gi .xu.s// D �˛ 2 Œ�˛0; 0/º. From (52), we have

˛ D gi .x
u.t2// � gi .x

u.t1// 6 �jt2 � t1j D �.t2 � t1/

As a consequence, we have .t2 � t1/ > ˛=� . Then, we have

�˛ 6 gi .xu.s// 6 0 8s 2 Œt1; t2�

and hence �gi .u; ˛/ > t2 � t1 > ˛=� . This concludes the proof.

APPENDIX E: PROOF OF PROPOSITION 4

There exists two closed ball BN and BM such that

BN � C � BM

with strict inclusions. We define N > 0 (respectively M > 0) as the radius of the ball BN (respec-
tively BM ).Now, if u D 0, then GC.u/ is well defined and is equal to 0. We now assume that u ¤ 0.
Then

N
u

kuk
2 C
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because it has norm N ; as a consequence u 2 kuk
N

C which proves that GC.u/ is well defined and
upper bounded by kuk

N
. This proves property a) and the right hand side inequality of (14).

On the other side, if u ¤ 0 then

M
u

kuk
… C

because its norm is M . As a consequence u … kuk
M

C, and u … 	C if 	 6 kuk
M

. Then, GC.u/ is lower
bounded by kuk

M
; this also holds if u D 0. This end the proof of property b).

The positive homogeneity of the gauge is trivial; because it is sub-additive [36], it is convex. The
continuity comes from the fact that it is convex and lower and upper bounded in the neighborhood
of any point. This proves properties c) and d).

The Dini derivative at 0 is obtained by observing that GC.0/ D 0 and that GC.hd/
h
D GC.d/ if

h > 0. We see that there exists a directional derivative at 0 along the direction d if and only if the
Dini derivatives along the directions d and �d are equal, which is equivalent to the intersection of C
with the line directed by d being symmetrical with respect to 0. This proves property e). Note that,
if this symmetry holds for all directions, then the gauge function is a norm.

Let us prove property f ). Because the boundary is continuously differentiable, there exists a
continuously differentiable function ' W Rm 7! R such that @C D ¹u s.t. '.u/ D 0º. For all
u 2 Rm n ¹0º, 	u 2 @C , g.u; 	/ , '.	u/ D 0. In the following, for any u 2 Rm n ¹0º, we con-
sider 	 such that g.u; 	/ D 0. From the convexity of C and because 0 belongs to the interior of C,
one has @g

@�
.u; 	/ D< r'.	u/; u >¤ 0 for all u 2 Rm n ¹0º. Using the implicit function theorem,

there exits .�˛; ˛/ � R and U a neighborhood of u and a C 1 function h W U 7! .�˛; ˛/ such that
8� 2 .	 � ˛; 	C ˛/ and 8v 2 U g.v; �/ D 0 , � D h.v/ D GC.v/. Therefore, GC is C 1 on
Rm n ¹0º. This proves f ).

Let us now prove property g). We first verify easily that u 2 C if and only if GC.u/ 6 1 because
C is closed [36]. Moreover, for any u ¤ 0, the intersection of C with the half axis directed by u is
the segment

h
0; u
GC.u/

i
because C is closed and GC.u/ > 0 [36]. As a consequence, GC.u/ D 1

implies that u is in the boundary of C. Conversely, if GC.u/ D 1 � 2˛ with ˛ > 0, because GC is
continuous, there exists a neighborhood V of u where GC.u/ 6 1 � ˛. For all elements v 2 V , the
intersection of C with the half-axis directed by v contains

�
0; v
1�˛

�
. This implies the existence of a

neighborhood of u that is included in C, and hence that u is interior to C. Similarly, if GC.u/ > 1,
u … C, one shows the existence of a neighborhood V of u and of ˛ > 0 such that the intersection of
C with the half-axis directed by v 2 V is included in

�
0; v
1C˛

�
. Therefore, u belongs to the exterior

of C. A consequence of all this is that the boundary of C is exactly defined byGC.u/ D 1, its interior
by GC.u/ < 1, and its exterior by GC.u/ > 1. This ends the proof.

APPENDIX F: PROOF OF PROPOSITION 8

To exhibit an upper bound on the variation of the cost, this variation is split into three additive terms,
bounding respectively the variation of the original cost, of the integral of the state penalty, and the
integral of the control penalty.

Define M D maxi Mi . From §4.4, one readily sees that

ku � vkL1 6 2˛M�u.˛/

We now proceed to establish bounds for the various terms.

F.1. Upper bound on the variation of the original cost

Here, an upper bound on j
R T
0 `.x

v; v/ � `.xu; u/dt j is exhibited. It is noted K`. From Proposition
13, there exist ƒ > 0 such that

© 2014 The Authors. Optimal Control Applications and Methods
published by John Wiley & Sons, Ltd.

Optim. Control Appl. Meth. (2014)
DOI: 10.1002/oca



INTERIOR METHOD IN CONSTRAINED OPTIMAL CONTROL

K` 6 ƒ
Z T

0

kxv � xukL1C k v.t/ � u.t/ k dt 6 ƒ ŒCT C 1� kv � ukL1

6 ƒŒCT C 1�2˛M�u.˛/

Define Ul D ƒ.CT C 1/2M ; then

Kl 6 Ul˛�u.˛/ (53)

F.2. Upper bound on the variation of the state penalty

Note K�g , �
Pq
iD1

R T
0 �g ı gi .x

v/ � �g ı gi .x
u/dt . Because �g is increasing, the integrand

is positive only when gi .xv.t// > gi .x
u.t//. Yet, from the construction of v in (19), one has

maxi gi .xv.t// 6 �ˇ0 for all t 2 Œ0; T �. Using the convexity of �g , and the fact that gi is Lipschitz
with constant Kg on X ad, one obtains

K�g 6 �
qX
iD1

Z
gi .x

v.t//>gi .xu.t//
�g ı gi .x

v/ � �g ı gi .x
u/dt

6 �
qX
iD1

Z
gi .x

v.t//>gi .xu.t//
jgi .x

u.t// � gi .x
v.t//j� 0g.gi .x

v.t///dt

6 �q
Z T

0

Kgkx
u � xvk1�

0
g.�ˇ0/dt

6 �qTKgCku � vkL1� 0g.�ˇ0/
6 �qTKgC� 0g.�ˇ0/2˛M�u.˛/ (54)

Define

Ug.�/ D �qTKgC�
0
g.�ˇ0/2M

then, we have

K�g 6 Ug.�/˛�u.˛/

F.3. Upper bound on the variation of the control penalty

There, we aim at getting a negative variation so that, as a whole, the cost is decreased when replacing
u by v.

Define

Ku , �
pX
iD1

Z T

0

�u
�
GCi .vi .t//

�
� �u

�
GCi .ui .t//

�
dt:

From the construction of v (19), we know that GCi .vi .t// 6 GCi .ui .t//. Because �u is non-
decreasing, this proves that the integral is negative or null. Moreover, because ui D vi when
GCi .ui / < 1 � ˛i , we have

Ku D �

pX
iD1

Z
GCi .ui />1�˛i

�u
�
GCi .vi .t//

�
� �u

�
GCi .ui .t//

�
dt
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Using the convexity of �u, one has

Ku 6 ��
pX
iD1

Z
GCi .ui />1�˛

k GCi .vi / �GCi .ui / kL1 � 0u
�
GCi .vi .t//

�
dt

D ��

pX
iD1

Z
GCi .ui />1�˛

k GCi .vi / �GCi .ui / kL1 � 0u
�
.1 � 2˛/GCi .ui .t//

�
dt

6 ��
pX
iD1

Z
GCi .ui />1�˛

k GCi .vi / �GCi .ui / kL1 � 0u Œ.1 � 2˛/.1 � ˛/� dt

6 ��
pX
iD1

Z
GCi .ui />1�˛

k GCi .vi / �GCi .ui / kL1 � 0u.1 � 3˛/dt

6 ��
pX
iD1

Z
GCi .ui />1�˛

2˛ k GCi .ui / kL1 � 0u.1 � 3˛/dt

6 ��
pX
iD1

Z
GCi .ui />1�˛

2˛.1 � ˛/� 0u.1 � 3˛/dt

D ��

pX
iD1

�ui .˛/˛�
0
u.1 � 3˛/

6 ��˛� 0u.1 � 3˛/�u.˛/ (55)

F.4. An upper bound on K.u2; �/ �K.u1; �/

Gathering (53)–(55), we obtain

K.v; �/ �K.u; �/ 6 ˛
�
U` C Ug.�/ � ��

0
u.1 � 3˛/

�
�u.˛/

This concludes the proof of Proposition 8. One can see that the variation is negative for ˛ small
enough if � 0u.1 � ˛/ tends toC1 when ˛ tends to 0.

APPENDIX G: PROOF OF PROPOSITION 10

Let us define f W Bk:k.0; 1/ 7! int.C/ as

f ./ D

8<
:
0 if  D 0
kk

GC./
 otherwise

The differentiability of the function f on Rm n ¹0º stems from the differentiability of both k:k and
GC . The continuity at 0 stems from (14). Its inverse is given by the following function

f �1./ D

8<
:
0 if  D 0

GC./


kk
otherwise

Similarly, the differentiability of the function f �1 on Rm n ¹0º stems from the differentiability of
both k:k and GC . The continuity at 0 stems from (14).
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Using (27), the function

�.�/ , f ı  .�/ D tanh.k � k/ ŒGC ı  .�/�
�1 tanh.k � k/

�

k � k

D tanh2.k�k/ ŒGC ı  .�/�
�1 �

k�k

maps Rm into int.C/. This mapping being the composition of two homeomorphism not differentiable
only in 0, � is a homeomorphism differentiable everywhere except at 0. The inverse function 
 W
int.C/ 7! Rm is the following:


.u/ ,  �1 ı f �1.u/ D atanh.GC.u//
u

k u k

This concludes the proof.

APPENDIX H: REMARKS ON SOLUTION ALGORITHMS USING
SATURATION FUNCTIONS

We rely on the routines bvp4c or bvp5c for solving the TBVPs. We shall denote them by bvpxc.

Values of � We have first to define a sequence of values for � for which we shall solve the penalized
problems. A practical choice is to choose a geometric progression using

EPS=logspace(a,b,n)
The initial exponent a should not be too small in order for bvpxc to initialize correctly. Indeed, if

� is very small, we are close to the solution of the optimal problem; in particular, we have observed
that the co-states converge numerically to singular functions (as expected from the theory). This
means that if � is small at the start, for bvpxc to succeed, it must use a very fine mesh refinement
in the neighborhood of the singularities of the co-states. Because, at the beginning of the algorithm,
we have no idea where the singularities occur, this is a very difficult task. This is why we start with
� not too small. The number n of values for � is a tradeoff between two considerations

� if n is large, then we are close to a continuation method, as we feed the result of the previous
iteration as an initial guess for the next iteration. This means that the collocation algorithm
will be faster because the dynamics of the two iterations are close, and hence, the initial guess
will be a good one. In particular, the mesh that is used for the initial guess will yield suitable
refinements in the neighborhood of the ‘singularities’ of the costate when � is small.
� on the other hand, a large n means a large number of iterations in the algorithm. In practice,

beyond a certain value, increasing n only increases the computation time without improving
the results.

The final exponent b essentially depends on the computing power of your machine. Of course n
must be increased if b is increased. We shall denote by �i , i D 1; : : : ; n the sequence previously
defined.

Collocation options We must also provide a maximum number of mesh-points and a (relative
and/or absolute) error for the collocation method. It is mainly a trial and error process; it is advised
to try a small number of meshpoints and a reasonable tolerance first. Note that, beyond a certain
value, increasing the possible number of mesh-points may be counterproductive. It is also possible
to adapt these parameters to �. A reasonable choice is to increase the possible number of mesh-
points as � decreases.

Initial guess An initial guess Ix;1 and Ip;1 must be given for the state and costate. The important

point is that Ix;1 must satisfy Ix;1Œk� 2
ı

X ad for all the indices k. There is no requirement on the
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costate Ip;1, except that its final value is zero. The time samples can be arithmetically distributed at
this stage, because for � not very small, the solving of (40) and (41) should not be stiff.

Iterations Using the initial guess Ix;i and Ip;i , use bvpxc to solve the TBVP (40) and (41) for
� D �i , with the settings described in the initialization step. Let .xi ; pi / the output of the solver.

If i < n, define .Ix;iC1; Ip;iC1/ D .xi ; pi /, increment i and loop into the iteration step.
If i D n, the state produced by the algorithm is xn, the costate is pn, and the control is obtained

by solving (39) with respect to the unknown �.��/. The iteration is stopped there.
Remark: when doing .Ix;iC1; Ip;iC1/ D .xi ; pi /, the time samples that are produced by bvpxc

are passed as an initial mesh for the next iteration. This means that, if, for index i , the singu-
larities begin to appear in pi then the mesh is adapted to these singularities, and, if the distance
between two successive values of � is not too big, it will provide a suitable initial mesh for the
collocation method.
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