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Abstract

Then Strang and Fix conditions are recalled and proved.

The Strang and Fix conditions caracterize the approximating properties of a
shift invariant localized operator by its ability to reconstruct polynomials. In
particular, it is used to relate the number of vanishing moments of a wavelet
to the order of approximation provided by the corresponding multiresolution
analysis. Article [1] is generally given as a reference for this result. This note
is intented to be an alternative to it, since the original paper has probably
disappeared from most bookshelves.

1 Notations

o L2 (R) is the space of integrable functions with a finite energy. HY (R) is
defined recursively by H°(R) = Lz(R) and H™ (R) is the space of functions
in L2(R) with derivatives in HY=1(R). If f € HY(R), f®) denotes the
nt" derivative of f.

e In what follows, K € LzLoc(R x R) is a kernel such that
Kx+1,y+1)=K(x,y) a.e. (1)
M st. K(z,y)=0if |z —y| > M, (2)

that is, K is a localized kernel and it commutes with integer shifts. Because
of the localization property (2), K is of finite energy with respect to the
separate variables z and y. Because of the shift invariance property (1), it
cannot be of finite energy with respect to the joint variables (z,y) (unless
it is zero).
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e for § # 0, the operator Uy is defined by

Ust@) = =1 (3)

Observe that
Vs 20 = 12 0 )

and, more generally,
1
|01 2 = 51 2y (4)

e To such an kernel K and any real § < 1 is associated an operator Pj
defined by

Pat@) =5 [ K (5.%) sy )

Observe that
Ps = UsP,U, (6)

and hence,
itz =[]
H 5f||L2(]R) 1U5f Lz(]R)
2 Preliminary results

2.1 Continuity
Theorem 1 There exists C > 0 such that, for any f € Lz(R) and § <1,

1252 < Ol Ig20, (7)

Proof: Equations (3) and (6) imply that (7) is satisfied if and only if it is
valid for § = 1. Then

/‘/K(%y)f(y)ddex < /Ulf(y)lzl[_M,M](xy)dy} {/|K(:”’y)|2dy} "
k+1 ,
< 2 [ A ALERY |dmdy]
Le[skl,lllcjﬂ] / P L aran (@ - y)dy]
<

I |/ K (o.y)?ldady]



< [Py

kEZ

k41
[/k L=k prg1) (y)dy]

< (@M +9) [ / 1 / K(x,y>2|dxdy} R

which proves the result with C? = (2M + 2) [fol Ik |K(:E,y)2|dxdy]

2.2 Convergence and rescaling
Theorem 2 Let P a continuous operator over L2(R) and define
Ps = Us PUy 5.

If there exists an integer N and a real number C such that, for any f €
HY*!(R),

Pllgag, < C[ro|
1PF g2 < O 2, (8)
then
P < O§N+ H (N+1)H
1P5 2@ =€ f L2 9)
and
wﬂmmm%maomméﬁo (10)

Proof: equations (4), (6) and (8) imply that

(N+1)
IPifl2 = 103 g g, < € [0

e ]
2 g) L2®)

which proves (9).
Equations (3) and (6) also imply that the family (Ps);-, is equicontinuous

over Lz(R). Since H!(R) is dense in Lz(R)7 this proves (10) for N = 0. For
N >0, the family (6= Ps),_, is proved to be equicontinuous over H" in the

following way: f € HN+L is decomposed as f = f1 + f2, the Fourier transform
f1 of f1 being defined by fi = f x 1j_1,1;. From (9) we derive

(N+1

1P filp2 <€ |1f

On the other hand, thorem 1 implies
P < <c||iV| 12

After rescaling, (11) and (12) imply

VNP = T2 < [ 72,

<A (1)

l Y
L2(r) L2(®)

which, together with the density of HN*1 in HY | proves the equicontinuity over
HY. Then (9) and the density of H¥*! in HY imply (10).



2.3 Vanishing moments

Lemma 1 Assume that there exists an integer N such that

/K(x,y)ypdyzoforogpg]\f (13)

Then
(L1) there exists a constant C such that, for any f € HYT1(R) and § < 1,

175/l 2 < €8 Hf(N+1)HL2<R> (4

(L2) For any f € HY(R),
5*N||P5f||L2(R) — 0 when § — 0 (15)

Proof: theorem 2 proves that equation (14) implies (L2).

Let us concentrate on the proof of (14). As noted before, (14) holds if and
only if it is valid for § = 1.

Observe that (14) with p = 0 implies

(P f)(x) = / K, 9)(f(y) — f(x))dy (16)

Moreover, if N > 0, then (13) implies

[ K-y =0tor1<p <N (17)

Using a Taylor expansion in (16) together with (17) yields

/ Py f[2de < / ( / K (2,)]

Observe that

2
dy) dx  (18)

/ S )y - 2)Vda
[z,y]

1| [0 2 Ve dy
< [/IK(af,y)ldy} L /[Ly] FEFV @)y — 2)Vdz
< || s i |- v
< | [l [ ]| a:




Hence (18) implies

[imspar < [ [ / |K<x,y>|dy]2 [MN / ””Z”’ﬂww(z)\dzrdx
e [ [ o]

. Z l/k+1/|l(($,y)|2dyd$] [/k—O—M-&-l ‘f(NH)(Z)‘Zdz]
X k

keZ —M

1
= 4MPNHD [/ /|K($,y)|2dydx]
0

X / ‘f(NH)(z)‘Z Z Lkt k4 m41)(2)dz

kEZ

8(M + 1) M2N+D {/Ol/K(%y)zdydx} [/‘f(N“)‘zdz]
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3 The Strang and Fix conditions

Theorem 3 (Stang and Fix [1]) The three following statements are equiva-
lent:

(A1) For any f € HY(R),

6 N|IPsf — fllp2 g — O when § — 0

(A2) For any f € HYTY(R) and § < 1,

Pf_ < O§N+1 H (N+1)H
1P = Pl < O0% 4 [190)| y
(A3) For any integer p, 0 <p < N,

/ K(z,y)y’dy = =¥ (19)
R

for almost every x.
Proof.

e Proof of (A3) = (A2)

As before, rescaling implies that (A2) holds if and only if it is valid for
0=1.



Observe that (A3) implies

(Pif — f)(a / K(x,y)(f(y) — f(x))dy (20)

Moreover, if N > 0, then Property (A3) implies

/K(m,y)(x—y)pdy:Ofor1§p§N (21)
Using a Taykor expansion in (20) and (21) yields

/|P1f—f|2dx§/</K(w7y) dy>2dw

The rest of the proof is then identical to the proof of lemma 1 after equation
(18).

Proof of (42) = (A1)
Using lemma 1 with P = P; — Id proves the result.

FN () (y — 2)Vdz
[z,y]

Proof of (A1) = (A3): for 0 < p < N, let w, an infinitely differentable
function with compact support such that

JEE e (22)
and define
pip(x) = /K(:&y)(ﬂc —y)Pdy for 0 <p < N,
K(z,y) = Zﬂk z)wi(x = y)
and
Bif(x / R (2.9 sty

Observe that K satisfies (1 ) and (2). In order to use lemma 1, let us prove
that K has N vanishing moments. If ¥ denotes the dlfference K — K, this
is equivalent to proving that ¥ satisfies condition (A3). Reordering the
integrations in the computation of the moments of ¥ gives

/uk(x)wk(fc —y)yPdy = / [/ K(z,z)(z — Z)"’dz} wi(z —y)y’dy

/K(z, 2)(z — z)kdz/wk(x —y)yPdy



The inner integral satisfies

/wk(w —y)yPdy = /wk(y)(fv —y)Pdy

Il
S
N
=3
~_
8
3
L
&
Enl
—
o
n
<
~=

Hence the moments of ¥ satisfy

k=N
> [ mwhente - prdy
k=0

:z:f:/K(%Z)(x — 2)Mdz ( Ik); ) (—1)Fzp~*

K(m,z)’§ Z (z —z)FaP~Fdz
k=0
/K(m,z)zpdz

which proves

/f((x,y)ypdyzOforngSN

Therefore, lemma 1 can be applied to K, and property (A2) for K implies
that ¥ = K — K also satisfies (A2), and hence, (A1). This means
-N

O~ M5 f — fHL2(]R) — 0 when § — 0 (23)

with )
Ty
i — - [x (—, —) d
5@ =5 [2(5.5) sy

For 0 < p < N, let f, an infinitely differentiable, compactly supported
function with supp(f,) C [-2,3], and f,(z) = 2 if « € [—1,2]. Then, for

0 small enough and z € [0, 1]
1 r—y 1 z—y

5 /wk (T) foW)dy = b1 5 /Wk: (T) yPdy
= 5”/wk(m —y)y"dp

_ ) B p o Nip—i

= oYt (L) w-aeay
ifk>p

- Lo (D) s e



For such a 6,

Mot~ Folf2e = [

Y%
O\H

dr  (24)

On the other hand, uy is 1-periodic, so, if A denotes the integer value of

1/6,
1 |k=p . 2
/ Z,uk (5) (—1)’“(5”( Z )mp_k — 2P| dz
0 [k=0
i=A (i41)5 |k=p r 2
> LN (_1yksp [ P p—k _ .p
> Z/ia Zuk(6)(1)5<k)x 2P| dx
=0 k=0
i=A (i4+1)6 |k=p —s 2
- Z/ Zﬂk<x61>(_1)kap<z>xw—ﬂ dx
i=0 710 k=0
5 |k=p 2
= Z/ Z’“’f "6”( Z )(m+i5)p_k — (x+1i0)P| {25)
For p = 0, equations (24) and (25) yield
, 5 i=A - )
_ > Z)
s~ lipg = [ 2o (5) -] as
1
= 26 [ Jpole) 1P da
! 2
> (1-6) [ @) —1Pdr (26)
0

Since N > 0, equation (26) together with the convergence condition (23)
implies that po = 1 almost everywhere and (19) is satisfied for p = 0.

Let us prove by recursion on p that, if N > 0, (19) holds for 0 < p < N.
To do so, (19) is assumed to be valid for 0 < p < n with n < N. This
implies that, if N > 1, uj vanishes almost everywhere for 0 < j < n.



Taking p = n in (24) and (25) gives
i=A

L[S @) o

1
= A5"+1/ |pin (z)|? dae
0

dzx

2
||25fn - fn”Lz(]R)

> (14 / lin ()2 dz (27)

Since N > n, equation (27) together with the convergence condition (23)
implies that p,, = 0 almost everywhere. Because of the recursion assump-

tion,
0= @) = [ K)o —9"dy=a" ~ [ K(o.p)ydy ae
which proves that (19) holds for p = n.
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