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Abstract

Then Strang and Fix conditions are recalled and proved.

The Strang and Fix conditions caracterize the approximating properties of a
shift invariant localized operator by its ability to reconstruct polynomials. In
particular, it is used to relate the number of vanishing moments of a wavelet
to the order of approximation provided by the corresponding multiresolution
analysis. Article [1] is generally given as a reference for this result. This note
is intented to be an alternative to it, since the original paper has probably
disappeared from most bookshelves.

1 Notations

• L2(R) is the space of integrable functions with a finite energy. HN (R) is
defined recursively by H0(R) = L2(R) and HN (R) is the space of functions
in L2(R) with derivatives in HN−1(R). If f ∈ HN (R), f (N) denotes the
nth derivative of f .

• In what follows, K ∈ L2
Loc(R × R) is a kernel such that

K(x + 1, y + 1) = K(x, y) a.e. (1)

∃M s.t. K(x, y) = 0 if |x − y| ≥ M, (2)

that is, K is a localized kernel and it commutes with integer shifts. Because
of the localization property (2), K is of finite energy with respect to the
separate variables x and y. Because of the shift invariance property (1), it
cannot be of finite energy with respect to the joint variables (x, y) (unless
it is zero).
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• for δ �= 0, the operator Uδ is defined by

Uδf(x) =
1√
δ
f

(x

δ

)

Observe that
‖Uδf‖L2(R)

= ‖f‖L2(R)
, (3)

and, more generally,∥∥∥[Uδf ](N)
∥∥∥
L2(R)

=
1

δN
‖f‖L2(R)

. (4)

• To such an kernel K and any real δ ≤ 1 is associated an operator Pδ

defined by

Pδf(x) =
1
δ

∫
R

K
(x

δ
,
y

δ

)
f(y)dy (5)

Observe that
Pδ = UδP1U 1

δ
(6)

and hence,
‖Pδf‖L2(R)

=
∥∥∥P1U 1

δ
f
∥∥∥
L2(R)

2 Preliminary results

2.1 Continuity

Theorem 1 There exists C ≥ 0 such that, for any f ∈ L2(R) and δ ≤ 1,

‖Pδf‖L2(R)
≤ C‖f‖L2(R)

(7)

Proof: Equations (3) and (6) imply that (7) is satisfied if and only if it is
valid for δ = 1. Then∫ ∣∣∣∣

∫
K(x, y)f(y)dy

∣∣∣∣
2

dx ≤
∫ [∫

|f(y)|21[−M,M ](x − y)dy

] [∫
|K(x, y)|2dy

]
dx

≤
∑
k∈Z

[∫ k+1

k

∫
|K(x, y)2|dxdy

]
[

sup
x∈[k,k+1]

∫
|f(y)|21[−M,M ](x − y)dy

]

≤
[∫ 1

0

∫
|K(x, y)2|dxdy

]
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×
∫

|f(y)|2
∑
k∈Z

[∫ k+1

k

1[k−M,k+M+1](y)dy

]

≤ (2M + 2)
[∫ 1

0

∫
|K(x, y)2|dxdy

] ∫
|f(y)|2dy

which proves the result with C2 = (2M + 2)
[∫ 1

0

∫
|K(x, y)2|dxdy

]
.

2.2 Convergence and rescaling

Theorem 2 Let P a continuous operator over L2(R) and define

Pδ = UδPU1/δ.

If there exists an integer N and a real number C such that, for any f ∈
HN+1(R),

‖Pf‖L2(R)
≤ C

∥∥∥f (N+1)
∥∥∥
L2(R)

(8)

then
‖Pδf‖L2(R)

≤ CδN+1
∥∥∥f (N+1)

∥∥∥
L2(R)

(9)

and
δ−N‖Pδf‖L2(R)

→ 0 when δ → 0 (10)

Proof: equations (4), (6) and (8) imply that

‖Pδf‖L2(R)
= ‖P1U 1

δ
f‖L2(R)

≤ C

∥∥∥∥[
U 1

δ
f
](N+1)

∥∥∥∥
L2(R)

= CδN+1
∥∥∥f (N+1)

∥∥∥
L2(R)

which proves (9).
Equations (3) and (6) also imply that the family (Pδ)δ≤1 is equicontinuous

over L2(R). Since H1(R) is dense in L2(R), this proves (10) for N = 0. For
N > 0, the family

(
δ−NPδ

)
δ≤1

is proved to be equicontinuous over HN in the
following way: f ∈ HN+1 is decomposed as f = f1 + f2, the Fourier transform
f̂1 of f1 being defined by f̂1 = f̂ × 1[−1,1]. From (9) we derive

‖P1f1‖L2(R)
≤ C

∥∥∥f (N+1)
∥∥∥
L2(R)

≤ C
∥∥∥f

(N)
1

∥∥∥
L2(R)

(11)

On the other hand, thorem 1 implies

‖P1f2‖L2(R)
≤ C ‖f2‖L2(R)

≤ C
∥∥∥f

(N)
2

∥∥∥
L2(R)

(12)

After rescaling, (11) and (12) imply

δ−N ‖Pδf − f‖L2(R)
≤

∥∥∥f (N)
∥∥∥
L2(R)

which, together with the density of HN+1 in HN , proves the equicontinuity over
HN . Then (9) and the density of HN+1 in HN imply (10).
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2.3 Vanishing moments

Lemma 1 Assume that there exists an integer N such that∫
K(x, y)ypdy = 0 for 0 ≤ p ≤ N (13)

Then

(L1) there exists a constant C such that, for any f ∈ HN+1(R) and δ ≤ 1,

‖Pδf‖L2(R)
≤ CδN+1

∥∥∥f (N+1)
∥∥∥
L2(R)

(14)

(L2) For any f ∈ HN (R),

δ−N‖Pδf‖L2(R)
→ 0 when δ → 0 (15)

Proof: theorem 2 proves that equation (14) implies (L2).
Let us concentrate on the proof of (14). As noted before, (14) holds if and

only if it is valid for δ = 1.
Observe that (14) with p = 0 implies

(P1f)(x) =
∫

K(x, y)(f(y) − f(x))dy (16)

Moreover, if N > 0, then (13) implies∫
K(x, y)(x − y)pdy = 0 for 1 ≤ p ≤ N (17)

Using a Taylor expansion in (16) together with (17) yields

∫
|P1f |2dx ≤

∫ (∫
|K(x, y)|

∣∣∣∣∣
∫

[x,y]

f (N+1)(z)(y − z)Ndz

∣∣∣∣∣ dy

)2

dx (18)

Observe that ∫
|K(x, y)|

∣∣∣∣∣
∫

[x,y]

f (N+1)(z)(y − z)Ndz

∣∣∣∣∣ dy

≤
[∫

|K(x, y)|dy

]
sup

|x−y|≤M

∣∣∣∣∣
∫

[x,y]

f (N+1)(z)(y − z)Ndz

∣∣∣∣∣
≤

[∫
|K(x, y)|dy

]
sup

|x−y|≤M

∫
[x,y]

∣∣∣f (N+1)(z)
∣∣∣ |y − z|N dz

≤ MN

[∫
|K(x, y)|dy

] ∫ x+M

x−M

∣∣∣f (N+1)(z)
∣∣∣ dz
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Hence (18) implies

∫
|P1f |2dx ≤

∫ [∫
|K(x, y)|dy

]2
[
MN

∫ x+M

x−M

∣∣∣f (N+1)(z)
∣∣∣ dz

]2

dx

≤ 4M2(N+1)

∫ [∫
|K(x, y)|2dy

][∫ x+M

x−M

∣∣∣f (N+1)(z)
∣∣∣2 dz

]
dx

≤ 4M2(N+1)
∑
k∈Z

[∫ k+1

k

∫
|K(x, y)|2dydx

] [∫ k+M+1

k−M

∣∣∣f (N+1)(z)
∣∣∣2 dz

]

= 4M2(N+1)

[∫ 1

0

∫
|K(x, y)|2dydx

]

×
∫ ∣∣∣f (N+1)(z)

∣∣∣2 ∑
k∈Z

1[k−M,k+M+1](z)dz

≤ 8(M + 1)M2(N+1)

[∫ 1

0

∫
|K(x, y)|2dydx

] [∫ ∣∣∣f (N+1)
∣∣∣2 dz

]

3 The Strang and Fix conditions

Theorem 3 (Stang and Fix [1]) The three following statements are equiva-
lent:

(A1) For any f ∈ HN (R),

δ−N‖Pδf − f‖L2(R)
→ 0 when δ → 0

(A2) For any f ∈ HN+1(R) and δ ≤ 1,

‖Pδf − f‖L2(R)
≤ CδN+1

∥∥∥f (N+1)
∥∥∥
L2(R)

(A3) For any integer p, 0 ≤ p ≤ N ,∫
R

K(x, y)ypdy = xp (19)

for almost every x.

Proof.

• Proof of (A3) ⇒ (A2)

As before, rescaling implies that (A2) holds if and only if it is valid for
δ = 1.
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Observe that (A3) implies

(P1f − f)(x) =
∫

K(x, y)(f(y) − f(x))dy (20)

Moreover, if N > 0, then Property (A3) implies∫
K(x, y)(x − y)pdy = 0 for 1 ≤ p ≤ N (21)

Using a Taykor expansion in (20) and (21) yields

∫
|P1f − f |2dx ≤

∫ (∫
|K(x, y)|

∣∣∣∣∣
∫

[x,y]

f (N+1)(z)(y − z)Ndz

∣∣∣∣∣ dy

)2

dx

The rest of the proof is then identical to the proof of lemma 1 after equation
(18).

• Proof of (A2) ⇒ (A1)

Using lemma 1 with P = P1 − Id proves the result.

• Proof of (A1) ⇒ (A3): for 0 ≤ p ≤ N , let ωp an infinitely differentable
function with compact support such that∫

xkωp(x)dx = δk,p (22)

and define

µp(x) =
∫

K(x, y)(x − y)pdy for 0 ≤ p ≤ N,

K̃(x, y) = K(x, y) −
k=N∑
k=0

µk(x)ωk(x − y)

and
P̃δf(x) =

1
δ

∫
K̃

(x

δ
,
y

δ

)
f(y)dy

Observe that K̃ satisfies (1) and (2). In order to use lemma 1, let us prove
that K̃ has N vanishing moments. If Σ denotes the difference K− K̃, this
is equivalent to proving that Σ satisfies condition (A3). Reordering the
integrations in the computation of the moments of Σ gives∫

µk(x)ωk(x − y)ypdy =
∫ [∫

K(x, z)(x − z)kdz

]
ωk(x − y)ypdy

=
∫

K(x, z)(x − z)kdz

∫
ωk(x − y)ypdy

6



The inner integral satisfies∫
ωk(x − y)ypdy =

∫
ωk(y)(x − y)pdy

=
i=p∑
i−0

(
p
i

)
xp−i

∫
ωk(y)(−y)i

=




0 if p < k(
p
k

)
(−1)kxp−k if p ≥ k

Hence the moments of Σ satisfy
k=N∑
k=0

∫
µk(x)ωk(x − y)ypdy =

k=p∑
k=0

∫
K(x, z)(x − z)kdz

(
p
k

)
(−1)kxp−k

=
∫

K(x, z)
k=p∑
k=0

(
p
k

)
(z − x)kxp−kdz

=
∫

K(x, z)zpdz

which proves ∫
K̃(x, y)ypdy = 0 for 0 ≤ p ≤ N

Therefore, lemma 1 can be applied to K̃, and property (A2) for K implies
that Σ = K − K̃ also satisfies (A2), and hence, (A1). This means

δ−N ‖Πδf − f‖L2(R)
→ 0 when δ → 0 (23)

with
Πδf(x) =

1
δ

∫
Σ

(x

δ
,
y

δ

)
f(y)dy

For 0 ≤ p ≤ N , let fp an infinitely differentiable, compactly supported
function with supp(fp) ⊂ [−2, 3], and fp(x) = xp if x ∈ [−1, 2]. Then, for
δ small enough and x ∈ [0, 1]

1
δ

∫
ωk

(
x − y

δ

)
fp(y)dy = δk,p =

1
δ

∫
ωk

(
x − y

δ

)
ypdy

= δp

∫
ωk(x − y)ypdp

= δp

i=p∑
i=0

ωk(x − y)
(

p
i

)
(y − x)ixp−idy

=




0 if k > p

(−1)kδp

(
p
k

)
xp−k if k ≤ p
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For such a δ,

‖Πδfp − fp‖2

L2(R)
=

∫
R

∣∣∣∣∣
k=N∑
k=0

µk

(x

δ

) 1
δ

∫
ωk

(
x − y

δ

)
fp(y)dy − fp(x)

∣∣∣∣∣
2

dx

≥
∫ 1

0

∣∣∣∣∣
k=N∑
k=0

µk

(x

δ

) 1
δ

∫
ωk

(
x − y

δ

)
fp(y)dy − fp(x)

∣∣∣∣∣
2

dx

=
∫ 1

0

∣∣∣∣∣
k=p∑
k=0

µk

(x

δ

)
(−1)kδp

(
p
k

)
xp−k − xp

∣∣∣∣∣
2

dx (24)

On the other hand, µk is 1-periodic, so, if ∆ denotes the integer value of
1/δ,

∫ 1

0

∣∣∣∣∣
k=p∑
k=0

µk

(x

δ

)
(−1)kδp

(
p
k

)
xp−k − xp

∣∣∣∣∣
2

dx

≥
i=∆∑
i=0

∫ (i+1)δ

iδ

∣∣∣∣∣
k=p∑
k=0

µk

(x

δ

)
(−1)kδp

(
p
k

)
xp−k − xp

∣∣∣∣∣
2

dx

=
i=∆∑
i=0

∫ (i+1)δ

iδ

∣∣∣∣∣
k=p∑
k=0

µk

(
x − iδ

δ

)
(−1)kδp

(
p
k

)
xp−k − xp

∣∣∣∣∣
2

dx

=
i=∆∑
i=0

∫ δ

0

∣∣∣∣∣
k=p∑
k=0

µk

(x

δ

)
(−1)kδp

(
p
k

)
(x + iδ)p−k − (x + iδ)p

∣∣∣∣∣
2

dx(25)

For p = 0, equations (24) and (25) yield

‖Σδfp − fp‖2

L2(R)
≥

∫ δ

0

i=∆∑
i=0

∣∣∣µ0

(x

δ

)
− 1

∣∣∣2 dx

= ∆δ

∫ 1

0

|µ0(x) − 1|2 dx

≥ (1 − δ)
∫ 1

0

|µ0(x) − 1|2 dx (26)

Since N ≥ 0, equation (26) together with the convergence condition (23)
implies that µ0 = 1 almost everywhere and (19) is satisfied for p = 0.

Let us prove by recursion on p that, if N > 0, (19) holds for 0 ≤ p ≤ N .
To do so, (19) is assumed to be valid for 0 ≤ p < n with n ≤ N . This
implies that, if N > 1, µk vanishes almost everywhere for 0 < j < n.
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Taking p = n in (24) and (25) gives

‖Σδfn − fn‖2

L2(R)
≥

∫ δ

0

∣∣∣∣∣
i=∆∑
i=0

µn

(x

δ

)
(−1)nδn

∣∣∣∣∣
2

dx

= ∆δn+1

∫ 1

0

|µn(x)|2 dx

≥ δn(1 − δ)
∫ 1

0

|µn(x)|2 dx (27)

Since N ≥ n, equation (27) together with the convergence condition (23)
implies that µn = 0 almost everywhere. Because of the recursion assump-
tion,

0 = µn(x) =
∫

K(x, y)(x − y)ndy = xn −
∫

K(x, y)yndy a.e.

which proves that (19) holds for p = n.

References

[1] Strang G. and Fix G., A Fourier analysis of the finite element variational
method, Construct. Aspects of Funct. Anal., pp. 796-830, 1971.

9


