
Universal approximation power of deep residual
neural networks through the lens of control theory

Bahman Gharesifard
UCLA

Séminaire CAS
École des Mines de Paris

May 2022



This is joint work with Paulo Tabuada (UCLA)



Motivation: neural networks in the loop

• LiDAR and depth cameras have become the key source of estimation
in robotics:

• Perception pipelines are supposed to transform LiDAR outputs into
state estimates
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• There is a widespread use of deep Neural Networks (NNs) for
processing vision and LiDAR data; example below is from NVIDIA:

Perception using Lidar Self-driving using Lidar data

A key starting point is how to use this perception pipeline in generating
control inputs with stability guarantees
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Neural Networks

Figure: Neural Network

A feedforward neural network consists of
• input and output layers, and a number of hidden layers
• Each layer ` consists of a set of nodes
• Edges from nodes in layer `− 1 to nodes in layer `, each equipped

with a weight w`
jk on the edge into the jth node in layer ` from the

kth node in layer `− 1
• The output of the jth node in layer ` will be denoted by x̂`j



Neural Networks

In each layer, the neural network performs the following update:

x̂`j = σ(∑
k=1

w`
jk x̂`−1

k + b`j )

where b`j is a constant, and σ is the activation function.

Figure: Neural Network



Residual neural network

We work with residual neural network, where there is a possibility of a
so-called skip connection:

Figure: Neural Network



Neural Networks

• Given a set of data {(xi
samples, yi

samples)}N
i=1

Typical objective: solve

inf
w,b

1
N

N

∑
i=1
‖yi

samples − x̂`(xi
samples)‖2,

Figure: Neural Network
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Neural networks for perception

Use neural network for estimation in a control-loop, while verifying
“performance”

we do not wish for inaccuracies in estimation to lead to huge spikes
(some ISS property in needed)
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Neural networks for perception

• We hope to train a residual neural network to learn the map from
output measurements y to the state x

• The main question then is:

How good a (training algorithm for) neural network can ap-
proximate a given function?
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Classical universal approximation question

A more delicate objective (written here informally) is

Function approximation: Given
• a continuous function f : Rn → Rm,

• E ⊂ Rn a compact set, and
• ε ∈ R+ be the desired approximation accuracy

Does there exists a neural network such the inputs can be “trained” on a
large enough finite sample Esamples ⊂ E such that the output, denoted
by g : Rn → Rm, satisfies

‖ f − g‖Lp(E) ≤ ε,

or better
‖ f − g‖L∞(E) ≤ ε?
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Brief history of function approximation

Neural networks with arbitrary width

Some key classical work (many others omitted here):

• Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics
of Control, Signals, and Systems, 1989

• Hornik, Approximation capabilities of multilayer feedforward networks, Neural
Networks, 1991

• Pinkus, Approximation theory of the MLP model in neural networks, Acta
Numerica, 1999

The results above, even though applicable to any depth, rely on the fact
that there is no bound on the width
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History of function approximation

Deep narrow neural networks, bounded width

Reason for interest: much easier to train

The literature on this subject is less classical, and obtaining results in
uniform norm, rather than Lp, are particularly difficult

For f : Rn → Rm (mostly for feedforward networks):
• Lu et. al.: The expressive power of neural networks: A view from

the width, Advances in Neural Information Processing Systems, 2017
L1 results for ReLU with m = 1 (n + 1 ≤ wmin ≤ n + 4)

• Hanin and and Sellke: Approximating continuous functions by
ReLU nets of minimal width, 2017 uniform results for ReLU
(n + 1 ≤ wmin ≤ n + m)

• Kidger and Lyons: Universal approximation with deep narrow
networks, Conference on Learning Theory, 2020 uniform results for
very general class of activation functions (wmin ≤ n + m + 1)
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History of function approximation

Deep narrow neural networks

Closing the gap:

• Park, Yun, Lee, and Shin, Minimum width for universal
approximation, International Conference on Learning
Representations, 2021
• uniform results for “ReLU” and feedforward networks

(wmin = max{n + 1, m})
• uniform results for more general feedforward networks

(wmin = max{n + 2, m})

• P. Tabuada and BG, Universal approximation power of deep
residual neural networks via nonlinear control theory, International
Conference on Learning Representations, 2021
• uniform results for a large class of activation functions with

• n ≥ m (wmin = n + 1)
• n < m (wmin = m + 1)

• Result notably apply to residual neural networks
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Control-theoretic view of residual networks

Control system perspective on residual neural networks:1 2

x(k + 1) = x(k) + s(k)Σ(W(k)x(k) + b(k))

• the layer k is viewed as indexing time
• (s(k), W(k), b(k)) ∈ Rn×n ×R×Rn are the control inputs
• Σ(x) = (σ(x1), σ(x2), . . . , σ(xn)) with σ the activation function

In continuous-time, this reads as

ẋ(t) = s(t)Σ(W(t)x(t) + b(t))

1E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse
Problems, 2017

2E. Weinan. A proposal on machine learning via dynamical systems. Communications
in Mathematics and Statistics, 2017



Control-theoretic view of residual networks

Control system perspective on residual neural networks:1 2

x(k + 1) = x(k) + s(k)Σ(W(k)x(k) + b(k))

• the layer k is viewed as indexing time
• (s(k), W(k), b(k)) ∈ Rn×n ×R×Rn are the control inputs
• Σ(x) = (σ(x1), σ(x2), . . . , σ(xn)) with σ the activation function

In continuous-time, this reads as
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Function approximation, reformulated

Given
• a function f : Rn → Rn

• a finite set of samples Esamples ⊂ Rn,
Construct an open-loop control input (S, W, b) to take x ∈ Esamples to
the states f (x)



Function approximation, reformulated

Punchline
• We need to drive an ensemble of samples with one controller

• This is different from the classical framework of ensemble control3

3This is related to A. Agrachev and A. Sarychev. Control in the spaces of ensembles of
points. SICON, 2020, and also A.A. Agrachev and M. Caponigro. Controllability on the
group of diffeomorphisms. Annales de l’Institut Henri Poincare, 2009.



Function approximation, reformulated

Ensemble system: d = |Esamples| copies given by:

Ẋ(t) = [S(t)Σ(W(t)X•1(t) + b(t)) | . . . |S(t)Σ(WX•d(t) + b(t)))]

where X(t) ∈ Rn×d and X•i(t) is the solution of the ith copy in the en-
semble, and Xinit = [x1|x2| . . . |xd] and Xfin = [ f (x1)| f (x2)| . . . | f (xd)],
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Geometric control in one slide

Consider the control system:

ẋ = u1Z1(x) + u2Z2(x),

Think of Z1 and Z2 as direction that you can travel along directly, and
u1 and u2 as the controls you can apply
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u1 and u2 as the controls you can apply

Key idea in control theory: we can obtain new
directions by “concatenating” the two direction

Example: Parallel parking



Geometric control in one slide

Consider the control system:

ẋ = u1Z1(x) + u2Z2(x),

Think of Z1 and Z2 as direction that you can travel along directly, and
u1 and u2 as the controls you can apply

The “extra control directions” are mathematically
characterized by Lie brackets:

[Z1, Z2](x) := ∂Z2
∂x Z1(x)− ∂Z1

∂x Z2(x)

In this sense, the reachable set of the system above
is equivalent to the one of

ẋ = u1Z1(x) + u2Z2(x) + u3[Z1, Z2](x)



Geometric control in one slide

Consider the control system:

ẋ = u1Z1(x) + u2Z2(x),

Think of Z1 and Z2 as direction that you can travel along directly, and
u1 and u2 as the controls you can apply

Iterating on this, the Lie algebra generated by the vector fields in a set F
is denoted by Lie(F )
• e.g., for F = {Z1, Z2},

Lie(F ) = {Z1, Z2, [Z1, Z2], [Z1, [Z1, Z2]], · · · }

• The celebrated Chow-Rashevsky Theorem implies that the
driftless control affine system above is controllable if

Lie(F )(x) = Rn

for every point x ∈ Rn\{0}.



Ensemble controllability

Although I am skipping some important technical points, you should
except to see higher order derivatives of σ when describing the Lie algebra

Assuming that the number of sample points d is larger than n here, it is
enough to have that

1 σ(A1`) Dσ(A1`) · · · Dd−2σ(A1`)
1 σ(A2`) Dσ(A2`) · · · Dd−2σ(A2`)
...

...
...

1 σ(An`) Dσ(An`) · · · Dd−2σ(An`)

 ,

where A ∈ Rn×d and ` ∈ {1, . . . , n}, has rank n



Ensemble controllability

Although I am skipping some important technical points, you should
except to see higher order derivatives of σ when describing the Lie algebra

Assuming that the number of sample points d is larger than n here, it is
enough to have that

1 σ(A1`) Dσ(A1`) · · · Dd−2σ(A1`)
1 σ(A2`) Dσ(A2`) · · · Dd−2σ(A2`)
...

...
...

1 σ(An`) Dσ(An`) · · · Dd−2σ(An`)

 ,

where A ∈ Rn×d and ` ∈ {1, . . . , n}, has rank n



Ensemble controllability

The next key observation

Proposition. Suppose ξ : R→ R satisfies the quadratic differential
equation:

Dξ(x) = a0 + a1ξ(x) + a2ξ2(x),

where a0, a1, a2 ∈ R, with a2 6= 0.

Then, the determinant of the
matrix:

L(x1, x2, . . . , x`) =


1 1 . . . 1

ξ(x1) ξ(x2) . . . ξ(x`)
Dξ(x1) Dξ(x2) . . . Dξ(x`)

...
...

. . .
...

D`−2ξ(x1) D`−2ξ(x2) . . . D`−2ξ(x`)

 ,

is non-zero if and only if

∏
1≤i<j≤`

(ξ(xi)− ξ(xj)) 6= 0
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Class of activation functions

Interestingly, a large class of activation functions σ : R→ R satisfy:

Dξ = a0 + a1ξ + a2ξ2

with a1, a2, a3 ∈ R, a2 6= 0, and ξ = Djσ for some j ∈N0.

Here are some examples:

Function name Definition Satisfied differential equation
Logistic function σ(x) = 1

1+e−x Dσ− σ + σ2 = 0
Hyperbolic tangent σ(x) = ex−e−x

ex+e−x Dσ− 1 + σ2 = 0
Leaky ReLU σ(x) = x for x ≥ 0 and D2σ− k(1 + r)Dσ + k(Dσ)2 + kr = 0

σ(x) = rx for x < 0 as k→ ∞
Soft plus σ(x) = 1

r log(1 + erx) D2σ− rDσ + r(Dσ)2 = 0

Table: Some activation functions and the differential equations they satisfy
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Controllability result

Theorem. Let N ⊂ Rn×d be the set defined by:

N = {A ∈ Rn×d | ∏
1≤i<j≤d

(A`i − A`j) = 0, ` ∈ {1, . . . , n}}.

Let n > 1 and suppose that the activation function satisfies the men-
tioned assumption. Then the ensemble control system is controllable
on the submanifold M = Rn×d\N.

Note that for n 6= 1 this submanifold is connected, open dense subset of
Rn×d ⇒

As long as Esamples, and f (Esamples) are in M, we have ensemble
controllability



Some final remarks on ensemble controllability

Very key ingredient in our understanding the structure of the Lie
algebra is utilizing the fact that the activation function satisfies

Dξ = a0 + a1ξ + a2ξ2



Function approximation

There is still a major step to ensure function approximation:

How do we ensure that the points in between samples are mapped in a
way that they guarantee uniform approximation?
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Key idea: Monotonicity

The key idea that helps us in this step is monotonicity:

On Rn, with the ordering relation x � x′ defined by xi ≤ x′i for all
i ∈ {1, . . . , n} and x, x′ ∈ Rn

A map f : Rn → Rn is said to be a monotone map when x � x′

implies f (x) � f (x′).

• When f is continuous differentiable, monotonicity admits a simple
characterization:

∂ fi
∂xj
≥ 0, ∀i, j ∈ {1, . . . , n}.

A vector field Z : Rn → Rn is said to be monotone when its flow
φτ : Rn → Rn is a monotone map
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Function approximation: monotonicity of vector field

An important fact: Suppose that
• f : Rn → Rn is a continuous map on E ⊂ Rn a compact set
• Suppose Esamples ⊂ Rn contains fine enough samples such that

∀x ∈ E ∃ x, x ∈ Esamples,
|x− x|∞ ≤ δ and xi ≤ xi ≤ xi,

• Suppose that φ : Rn → Rn is a monotone map satisfying:

‖ f − φ‖L∞(Esamples)
≤ ζ,

with ζ ∈ R+.
Then,

‖ f − φ‖L∞(E) ≤ 2ω f (δ) + 3ζ

where ω f is the modulus of continuity of f .
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Function approximation: monotone functions

Is it possible to ensure monotonicity of the generated flow?



Function approximation: monotone functions

Theorem. Let n > 1 and suppose that the activation function sat-
isfies the mentioned assumption. Then, for every monotone analytic
function f : Rn → Rn, E ⊂ Rn compact, and for every ε ∈ R+ there
exist a time τ ∈ R+ and an input (s, W, b) : [0, τ]→ R×Rn×n ×Rn

so that the flow φτ : Rn → Rn of the corresponding control system
satisfies

‖ f − φτ‖L∞(E) ≤ ε.



Function approximation: monotone functions

The proof is technical and relies on:

1. Ensuring that change of orders of the entries of the flow occur only
finite number of times (analyticity helps here)

2. Ensuring that the inputs are constructed in a way that can guarantee
monotonicity with in subinterval of times, and monotonicity in
transitions (neural networks being overly actuated helps here)
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The general case

What happens when the map to be approximated is not monotone?



The general case

What happens when the map to be approximated is not monotone?

Key idea: Utilize embeddings4 5

Embedding of a function to a monotone one usually requires
doubling of the state, however, we can get away with only
adding an extra dimension, again due to flexibility of the design of
the neural network

4Fort, The embedding of homeomorphisms in flows, Proc. of AMS, 1955
5Utz, The embedding of homeomorphisms in continuous flows, Top. Proc. 1981



Function approximation: the general case

Embed the function f on Rn into a monotone function f̃ on Rκ,
where κ = n + 1

In particular, we find:
• An injection α : Rn → Rκ, and
• A projection6 β : Rκ → Rn such that

f = β ◦ f̃ ◦ α

where f̃ is monotone

6α and β are implemented by the first and last layer of the neural network
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Function approximation: the general case

Theorem. Let n > 1 and suppose that the activation function satisfies
the mentioned assumption. Then, for every continuous function f :
Rn → Rn, compact set E ⊂ Rn, and for every ε ∈ R+ there exist
a time τ ∈ R+, an injection α : Rn → Rκ, κ = n + 1, a projection
β : Rκ → Rn, and an input (s, W, b) : [0, τ]→ R×Rκ×κ×Rκ so that
the flow φτ : Rκ → Rκ defined by the solution of the corresponding
control system

‖ f − β ◦ φτ ◦ α‖L∞(E) ≤ ε.



Summary of our approach to uniform approximation

1. Control-theoretic view of residual networks
2. Controllability of sample ensembles ala geometric control
3. Key role of monotonicity in uniform approximation outside samples
4. Ensuring monotonicity by embedding into a monotone map



Outlook

Among many things:

• Training neural networks with guarantees for control

• Data-driven control using deep residual networks

• Issues of overfitting and regularization

• Issues with low-dimensional data
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