On Optimal Control of Complex Dynamical Systems

Riccardo Bonalli

Autonomous Systems Laboratory, Department of ASU

Aeronautics and Astronautics, Stanford University

Stanford University




A quick overview of my research

Goal

Devise algorithms for

autonomous systems that select
the best available strategy and
make robust decisions under
uncertainty




A quick overview of my research

Stochastic optimal
control

Iteration 1
Iteration 2
- | —*— Iteration 3
—e— [teration 4
—e— [teration 5
41 —e— lteration 6
—e— [teration 7
Iteration 8

Devise algorithms for
autonomous systems that select
the best available strategy and
Deterministic make robust decisions under

optimal control uncertainty



http://www.youtube.com/watch?v=nSCQs-_UOAE
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First topic

Stochastic non-linear
optimal control through

Sequential Convex
Programming (SCP)

Optimal trajectories for Astrobee computed via SCP



Optimal control of finite-dimensional dynamical systems

u“é%,g/ floe ”“D “—— Cost

dx(s) = u(s), z(s)) dsea s, x( dB) <«—— Dynamics
_ 40 @; ) - Initial / Final Conditions
C IE[ h(xz(s) g o) = O,tf] <« State Constraints

goal




Several approaches have already been proposed

_ Original LQR papers
Linear systems: /

- W. M. Wonham, On a matrix Riccati equat/on of stochast/c control, SIAM J. Control, 6(4): 681+697, 1968.

- U. G. Haussmann, Optimal stationary and control dependent noise, SIAM J.| Control,
9(2): 184-198, 1971.

- J.M. Bismut, Linear quag Remark ndom coefficients, SIAM J.
Control, 14(3): 419-444 :

- S. Chen, X. Li, and X. Z We might some_ho_w be able to definite control weight costs,
SIAM J. Control, 36(5): leverage the existing works on

- T.E. Duncan, B. Pasik-D linear systems: Sequential state dependent fractional
brownian noise and stochastioe bzt f ekl el RIS E5G(2): 199-202, 2017.

Nonlinear systems:

- A. Meshab, S. Streif, R. Findeisen, R.D. Braatz, Stochastic nonlinear model predictive control with
probabilistic constraints, American Control Conference, 2014, Portland (Oregon).

- S. Satoh, H.J. Kappen, M. Saeki, An iterative method for nonlinear stochastic optimal control based on
path integrals, IEEE Transactions on Automatic Control, 62(1): 262-276, 2017.
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Intuitive introduction to SCP

A few iterations later... —
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Intuitive introduction to SCP

A few iterations later...

Convergence!
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Stochastic SCP formulation

(OCP) da(s)

Be careful: the linearization

ob makes sense only locally. Add
da(s) = (Mau(s) u) + 5o @) w(N(als) = as))) ds Totemaon o

(a(ack(s)) + 97 () () - xk<s>>) 4B, B[ [ e —ar(o) ] < e
0

Agt1 €R;, Agy1 — 0



Are we really solving the original problem?

This begs the question: “Are we doing something meaningful? l.e., when
convergence is achieved, what is the quantity we come up with?”

Our answer

Under mild assumptions, SCP finds a local
optimum for (OCP), in the sense of the
Pontryagin Maximum Principle (PMP)*

*The PMP are
necessary conditions

The proof leverage the continuity for local optimality
properties of stochastic 1t variational
inequalities with respect to convexification



The stochastic Pontryagin Maximum Principle

Let U = L%([0,¢4);U) or U = L?([0,t¢] x Q;U), where U C R. For (OCP), we define the Hamiltonian

H(z,p,p°,q,u) =p' (fo(z) +ufi(x)) +p°(u® + h(z)+ ¢ o(x).
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Theoretical guarantees for stochastic SCP [1]

Assume that SCP provides a sequence (A, ug, T )ren such that:

o (ux(+),zx(+)) locally solves (COCP)y;

ts
G E {/ lzrt1(s) — z(s)]|? ds} < Agy1 where Ay — @
0

Co (uk)ken € U converges to u € L{)

It may be relaxed by
using final constraints

We may adopt weak
convergences for
deterministic controls

Main result of

convergence

[1] R. Bonalli, T. Lew and M. Pavone, Sequential Convex Programming for Non-Linear Stochastic Optimal Control. Submitted to SIAM Journal on Control and Optimization.

Note: this may be
leveraged to
accelerate SCP!



Numerical results

Optimal control of a drifting vehicle

tf
; 5 ,
) up(s)” + us(s)” ds
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within the cost 3.0
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Second topic

Real-time motion policies for
complex dynamical systems
through Pullback Bundle

Dynamical Systems
(PBDSs)

Example PBDS task map tree



Policy synthesis is generally difficult

((91,(92) e M = Sl X Sl

Objective: find o(t) = (61(t),02(t)) such that

E(co(t)) ¢ Obs 1, E(o(t)) ¢ Obs 2, @
E(o(t)) ¢ Obs 3, E(o(ty)) € Goal Obs2 Goal Obs1

oW

Obs 3



Proposed solution: plan on task spaces

((91,(92)6Mé81><81 ~{9\
fii M — N; 20, +00) 2
d; = fi(01,62) € N; —
/d2 dGoal yd
Objective: Obs2 Goal “ Obs 1 dy

,, r'g
1) design d; : [0,#f] —> N; such that w W v /d3

dl(t) > O, dg(t) > O, d3(t) i)

da(ty) = dgoal(ty) =0 : |
Obs 3
2) find o(t) = (61(t),02(t)) such that
(fla f23 f33 f4)(0'(t)) “resembles”

(dla d2a d3a d4)(t)



Some works along this line
1) Artificial Potential Functions [1,2] =

Computationally efficient, but
might get trapped in local minima

2) RMPflow [3]
(Geometric Dynamical Systems weighted
by Riemannian Motion Policies (RMPs))

Adopting appropriate Riemannian metrics
to avoid potentials, but geometrically
inconsistent and difficult to tune

[1] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots. In IEEE International Conference on Robotics and Automation, 1985.

[2] H. Lukas, A. Billard, and J.-J. Slotine. Avoidance of convex and concave obstacles with convergence ensured through contraction. IEEE Robotics and
Automation Letters 4.2 (2019): 1462-14609.

[3] C. Ching-An, M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots, and N.Ratliff. RMPflow: A computational graph for automatic motion policy generation.
In International Workshop on the Algorithmic Foundations of Robotics, 2018.
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https://ieeexplore.ieee.org/author/37283150000

Our objective

Leverage Lagrangian mechanics
and bundle theory to devise a

local-minima free, computationally
efficient, geometrically consistent,
and easy-to-use method

How do we do it?

1) Design efficient trajectories on task spaces as solutions to a new class of
mechanical systems, i.e., Pullback Bundle Dynamical Systems (PBDSSs)

2) Recover a trajectory in the configuration manifold that achieves all the tasks by
projecting the accelerations related to each PBDS over appropriate subspaces



How does Lagrangian mechanics work?

Lagrangian mechanics on T'M:

1. Fix a metric g = “kinetic energy” and
generalized forces (here, for sake of
clarity, I adopt a different definition)

Fy:TM — TM, F,(p,v) € T,M



Building a curve that satisfies all the tasks

1. For the ith task, design a task mapping f; : M — N, and equip the task manifold N; with a Riemannian
metric g;(z) : T.N; x T.N; — R, generalized forces F; : TN; — T*N;, and a cost Riemannian metric

wi(z7U)) : T(z,w)TNz' X T(z,w)TNL — R. ‘/\
RAaal



Practical example

1)

2)

3)

4)

Configuration manifold

M=S*2{peR’:

Planning on the unitary
sphere: reaching a point
while avoiding any collision

Ipl =1}

Task 1: goal attraction

fl M — N, ZRipl—)(h:“p_pgoal”z) q)l(QI)ZQ%

Task 2: collision avoidance (one for each obstacle)

fo:M — No=R:p+ g = min ||p—:r:||2
rEobs

= 1’ < d f87 v < 0
ilas) =ep (q_2> ,  wa(ge,v2) = { © HHIGE $2

2

0, otherwise

Task 3: energy dissipation

fa: M — M :p—p,

g3 = “round metric”,

F(p)-v=—v
w3 = “induced metric”




Practical example

1)

2)

3)

4)

Configuration manifold

M=S"2{peR’:

Task 1: goal attraction
fitM—Ni=R:p—q=|p—peoall>, @1(a1) =¢

Task 2: collision avoidance (one for each obstacle)

fo:M — Ny =R:prs go = min |p—z|?
TEobs

o 17 g2 < dunsafm Vg < 0
92(q2) = exp q_Q ,  wa(qe,v2) =

2

Task 3: energy dissipation

fs: M — M :p—p,

g3 = “round metric”,

Planning on the unitary
sphere: reaching a point
while avoiding any collision

lpll =1}

0, otherwise

F3(p)-v=—v

w3 = “induced metric”



http://www.youtube.com/watch?v=k3Q6Mh9dSC8

Future directions

SCP

Extend to more general frameworks, e.g., considering risk measures and scenario optimization
Analysis of the convergence for the training of deep neural networks
- Leverage this framework to de=

PBDS
- Extend the fo Thank you for your attention!

- Extend the fo Any question? represented

partial differential equations

Collaborators

A. Bylard



Detailed approaches



Convergence of SCP - sketch of proof

Define the augmented dynamics to be

b(z,u) = (fo(z) + ufi(z),v® + h(z)) e R"™, 6(z) = (o(x),0) € R*H .

Lebesgue points for
stochastic controls are
correctly introduced via
Bochner integration



How do we make it work in practice?

Some numerical strategies

- For every fixed realization of the Brownian motion, solve a deterministic convex problem (expensive)
- For specific costs, solve a sequence of LQR problems with stochastic coefficients (hard problem)
- We propose another procedure that leverages the structure and the results entailed by SCP

Some simplifying assumptions

- Controls are deterministic

- The cost can be written as function of the mean of stochastic trajectories

- The method is such that, at each iteration, the optimal trajectory has “small variance” at each time
- The dynamic takes the following form:

Also “functions” of
dz(s) = b(x(s),u(s)) ds Hy(s)dBs th:cz/ar?:;:;;aoy

be considered

dy(s) = c(y(s),u(s)) ds, cis affine in u



Deterministic reformulation 1

da(s) = (Ban o), u(s) + G (o 5) () )

B The process is Gaussian
dy(s) = (C(yk(s), u(s)) + %(yk(s),uk(s))(y(s) —yk(s)) | ds and may be characterized
by its mean and covariance!

(5) = (<lon(6),u(6) + S (5) ) w(6) (o) ) s

k lt) = Mi(sjmls) + di(s, uls)) @ System of ODEs. The
(CE( ) = Mp(s)X(s) + X(s) My, (S)T y(s )y(s)T> variance may be controlled

thanks to the variable y,
y(s) = c(yr(s), u(s)) + —(yk(s) uk(s))(y(s) — yr(s))

\

and forced to be small!

\



Deterministic reformulation 2

N

(1(t) = My (s)m(s) + di (s, u(s))

B(t) = Mi(s)S(s) + () Mi(s) (+ y(s)y(s) )
oc

9(s) = clyk(s), uls)) + 7 (Y (s), ue(s)) (y(s) — yr(s))

"()—Mk() (s) + di (s, u(s))

B(t) = Mi(s)2(s) + D()Mie(s) (+ y(s)un(s) ")

\

| 9(s) = c(yk(s), uls)) + 3—x(yk(8),w(8))(y(8) — Uk(s))

Presence of a term which is
quadratic in y. This prevents from
using convex optimization to solve
each subproblem

Ideal!

Use the convergences
necessarily entailed
by SCP




Final convex subproblems

. ty . Oh The variance is penalized
1lin / u(s)” 4+ h(mg(s)) + g(mk(s))(m(s) —mg(s)) +tr(X.(s)) ds <—— to make the previous
# ’ approximation well-posed

m(t) = Myg(s)m(s) + di (s, u(s))

3 — X 4 T T <«— Linear dynamics of the
Za(t) = Mi(s)Za(s) + ?m(S)Mk(S) T y(s)ye(s) mean and the covariance
C

9(s) = clyr(s), u(s)) + Z—(yr(s), ur(s)) (y(s) — y(s))

0 0 Initial and final conditions
(m,y)(0) =(m",y"), gr(ty,m(ty),y(ts)) =0 as functions of the mean

ty ty We bound with the
(E { [ e - o) ds] s) 2 [ (%00 (9) + m(s) = me(s)]” ds < A1 +—— covariance of the “eror
0 0 trajectory. Its dynamics
must be included in the
formulation (this is done
exactly as before)



Standard tools in Lagrangian mechanics

M = configuration manifold, N, = i-th task manifold, f; : M — N; = i-th task mapping



We adapt those tools to introduce a new kind of mechanics

M = configuration manifold, N; = i-th task manifold, f; : M — N, = i-th task mapping



From Lagrangian mechanical systems to PBDSs

Lagrangian mechanics on T'M:

1. Fix a metric g = “kinetic energy” and
generalized forces (here, for sake of >

clarity, I adopt a different definition)

Fp:TM — TM, F,(p,v) € T,M

(P4, va)
(p3,v3)
(p2;v2)
(p1,v1)



Building a curve that satisfies all the tasks

Several solutions are available.
We look for o : [0, +00) — M whose task
acceleration is the “closest” to the task
accelerations of all ; : [0, +00) — M




This looks pretty complex, what are the benefits?

1)  Geometric well-posedness

PBDS Original RMPflow

2)  Global, geometrically consistent stability

When F,, = f£ — grad,, ®; with }'5 = “dissipative forces” and ®; = “potential”’, under appropriate assumptions
we can invoke LaSalle principle to prove global stability through the following Lyapunov function (here, f*g; =
“pullback metric” and f*®; = “pullback potential”):

Ntask Ntask

ViTM R (o) g Y o) (0,n) + Y (o)
i=1 =1

3) Computational efficiency and ease-of-use

Let’s see how to set things up on a practical example!



