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A quick overview of my research

Goal

Devise algorithms for 
autonomous systems that select 
the best available strategy and 
make robust decisions under 

uncertainty
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A quick overview of my research

Deterministic 
optimal control

Stochastic optimal 
control

http://www.youtube.com/watch?v=nSCQs-_UOAE
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A quick overview of my research
Differential 

geometric policy 
generation

Stochastic optimal 
control

Large scale control 
algorithms

Provable 
reinforcement 

learning Some 
ongoing/future 

projects

Today’s topic!

1) SCP
2) Pullback Bundle 

Dynamical Systems

http://www.youtube.com/watch?v=nSCQs-_UOAE
http://www.youtube.com/watch?v=wA2wT0JHdNE


2

First topic

Optimal trajectories for Astrobee computed via SCP

Stochastic non-linear 
optimal control through 

Sequential Convex 
Programming (SCP)



goal

Cost

Dynamics

Initial / Final Conditions

State Constraints
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Optimal control of finite-dimensional dynamical systems



4

Linear systems:

Nonlinear systems:

- W. M. Wonham, On a matrix Riccati equation of stochastic control, SIAM J. Control, 6(4): 681-697, 1968.
- U. G. Haussmann, Optimal stationary control with state and control dependent noise, SIAM J. Control, 

9(2): 184-198, 1971.
- J.M. Bismut, Linear quadratic optimal stochastic control with random coefficients, SIAM J. 

Control, 14(3): 419-444, 1976.
- S. Chen, X. Li, and X. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs, 

SIAM J. Control, 36(5): 1685-1702, 1998.
- T.E. Duncan, B. Pasik-Duncan, Stochastic linear-quadratic control with state dependent fractional 

brownian noise and stochastic coefficients, IFAC-PapersOnLine, 50(2): 199-202, 2017.

Original LQR papers

- A. Meshab, S. Streif, R. Findeisen, R.D. Braatz, Stochastic nonlinear model predictive control with 
probabilistic constraints, American Control Conference, 2014, Portland (Oregon).

- S. Satoh, H.J. Kappen, M. Saeki, An iterative method for nonlinear stochastic optimal control based on 
path integrals, IEEE Transactions on Automatic Control, 62(1): 262-276, 2017.

Remark

We might somehow be able to 
leverage the existing works on 

linear systems: Sequential 
Convex Programming (SCP)

Several approaches have already been proposed
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Intuitive introduction to SCP
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A few iterations later...

Intuitive introduction to SCP
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Convergence!

A few iterations later...

Intuitive introduction to SCP
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Be careful: the linearization 
makes sense only locally. Add 
trust-region constraints:
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Stochastic SCP formulation



Our answer

Under mild assumptions, SCP finds a local 
optimum for (OCP), in the sense of the 
Pontryagin Maximum Principle (PMP)*
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This begs the question: “Are we doing something meaningful? I.e., when 
convergence is achieved, what is the quantity we come up with?”

*The PMP are 
necessary conditions 
for local optimality

Are we really solving the original problem?

The proof leverage the continuity 
properties of stochastic Itô variational 

inequalities with respect to convexification



The stochastic Pontryagin Maximum Principle
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[1] R. Bonalli, T. Lew  and M. Pavone, Sequential Convex Programming for Non-Linear Stochastic Optimal Control. Submitted to SIAM Journal on Control and Optimization.

It may be relaxed by 
using final constraints

Main result of 
convergence

Note: this may be 
leveraged to 
accelerate SCP!

Theoretical guarantees for stochastic SCP [1]

We may adopt weak 
convergences for 
deterministic controls
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Optimal control of a drifting vehicle

Collision avoidance 
constraints penalized 
within the cost

Simulating vehicle 
drifting

Numerical results
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Second topic

Example PBDS task map tree

Real-time motion policies for 
complex dynamical systems 

through Pullback Bundle 
Dynamical Systems 

(PBDSs)
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Policy synthesis is generally difficult

Goal Obs 1Obs 2

Obs 3
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Proposed solution: plan on task spaces

Goal Obs 1Obs 2

Obs 3
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Some works along this line
1) Artificial Potential Functions [1,2]

Computationally efficient, but 
might get trapped in local minima

2) RMPflow [3]
(Geometric Dynamical Systems weighted
by Riemannian Motion Policies (RMPs))

Adopting appropriate Riemannian metrics 
to avoid potentials, but geometrically 
inconsistent and difficult to tune

[1] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots. In IEEE International Conference on Robotics and Automation, 1985.
[2] H. Lukas, A. Billard, and J.-J. Slotine. Avoidance of convex and concave obstacles with convergence ensured through contraction. IEEE Robotics and 
Automation Letters 4.2 (2019): 1462-1469.
[3] C. Ching-An, M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots, and N.Ratliff. RMPflow: A computational graph for automatic motion policy generation. 
In International Workshop on the Algorithmic Foundations of Robotics, 2018.
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https://ieeexplore.ieee.org/author/37283150000


Our objective

Leverage Lagrangian mechanics 
and bundle theory to devise a 

local-minima free, computationally 
efficient, geometrically consistent, 

and easy-to-use method

1) Design efficient trajectories on task spaces as solutions to a new class of 
mechanical systems, i.e., Pullback Bundle Dynamical Systems (PBDSs)

2) Recover a trajectory in the configuration manifold that achieves all the tasks by 
projecting the accelerations related to each PBDS over appropriate subspaces

How do we do it?
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How does Lagrangian mechanics work?
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Building a curve that satisfies all the tasks
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Goal



Practical example
Planning on the unitary 
sphere: reaching a point 

while avoiding any collision
 

1) Configuration manifold

2) Task 1: goal attraction

3) Task 2: collision avoidance (one for each obstacle)

4) Task 3: energy dissipation

18
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http://www.youtube.com/watch?v=k3Q6Mh9dSC8


Future directions
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- Extend to more general frameworks, e.g., considering risk measures and scenario optimization
- Analysis of the convergence for the training of deep neural networks
- Leverage this framework to deal with optimal control of nonlinear partial differential equations

Collaborators

M. Pavone T. Lew A. Bylard

SCP

- Extend the formalism to incorporate dynamical constraints
- Extend the formalism to Finsler geometry to enlarge the class of tasks that can be represented

PBDS
Thank you for your attention!

Any question?



Detailed approaches



Lebesgue points for 
stochastic controls are 
correctly introduced via 
Bochner integration

Convergence of SCP - sketch of proof



Some numerical strategies
- For every fixed realization of the Brownian motion, solve a deterministic convex problem (expensive)
- For specific costs, solve a sequence of LQR problems with stochastic coefficients (hard problem)
- We propose another procedure that leverages the structure and the results entailed by SCP

- Controls are deterministic
- The cost can be written as function of the mean of stochastic trajectories
- The method is such that, at each iteration, the optimal trajectory has ‘‘small variance’’ at each time
- The dynamic takes the following form:

Some simplifying assumptions

Also ‘‘functions’’ of 
the variable y may 
be considered

How do we make it work in practice?



The process is Gaussian 
and may be characterized 

by its mean and covariance!

System of ODEs. The 
variance may be controlled 
thanks to the variable y, 
and forced to be small!

Deterministic reformulation 1



Presence of a term which is 
quadratic in y. This prevents from 
using convex optimization to solve 
each subproblem

Idea!

Use the convergences 
necessarily entailed 

by SCP

Deterministic reformulation 2



The variance is penalized 
to make the previous 
approximation well-posed

Linear dynamics of the 
mean and the covariance

Initial and final conditions 
as functions of the mean

We bound with the 
covariance of the ‘‘error’’ 
trajectory. Its dynamics 
must be included in the 
formulation (this is done 
exactly as before)

Final convex subproblems



Standard tools in Lagrangian mechanics



We adapt those tools to introduce a new kind of mechanics



From Lagrangian mechanical systems to PBDSs

Goal



Building a curve that satisfies all the tasks



This looks pretty complex, what are the benefits?
1) Geometric well-posedness

PBDS Original RMPflow

2) Global, geometrically consistent stability

3) Computational efficiency and ease-of-use
Let’s see how to set things up on a practical example!


