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Abstract— We consider a system of two parabolic equations
with a forcing term present in one equation and a nonlinear
coupling term of a particular type in the other one. We establish
a local null controllability result, even if the linearized control
system fails to be null controllable. The proof combines the
return method, a Carleman inequality and an argument based
on homogeneity. Our result can be applied to a reaction-
diffusion system from Chemistry and to the Ginzburg-Landau
equation.

I. INTRODUCTION

The control of linear (or semilinear) parabolic equations is
by now well understood since the introduction of Carleman
inequalities by Fursikov and Imanuvilov in the nineties
(see e.g. [1] and the references therein). The consideration
of systems of parabolic equations is much more recent.
The attention was paid in [2] to the null controllability of
linear control systems with constant coefficients and internal
control

wt = (D∆+A)w+1ω Bh, in (0,T )×Ω (1)
w = 0, in (0,T )×∂Ω (2)

where w : (0,T )×Ω → Rn is the state to be controlled,
h : (0,T )×ω → Rm is the control input, D ∈ Rn×n is a
diagonal matrix, A∈Rn×n and B∈Rn×m are given matrices,
∆ = ∑1≤i≤k ∂ 2/∂x2

i is the Laplacian operator, ω ⊂ Ω ⊂ Rk

is a nonempty open set (the control region), and 1ω is the
characteristic function of ω , defined as

1ω(x) :=

{
1 if x ∈ ω,

0 if x ∈Ω\ω.

It was proved in [2] that the null controllability of (1)-(2)
was equivalent to the extended Kalman condition

rank [Lp|B] = n ∀p≥ 1,

where [A|B] := [B,AB,A2B, ...,An−1B] is the Kalman matrix
and Lp := −λpD + A, (λp)p≥1 denoting the sequence of
eigenvalues of the operator −∆ on Ω with Dirichlet boundary
conditions. Thus, when D = I, the null controllability holds
whenever rank [A|B] = n, i.e. when the finite-dimensional
control system

ẇ = Aw+Bu
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is itself controllable. The situation is more tricky for systems
with variable coefficients or for boundary control. We refer
the reader to [3] for a survey. A challenging problem is the
issue whether the cascade system

ut −∆u = 1ω h in (0,T )×Ω, (3)
vt −∆v = 1Ou in (0,T )×Ω, (4)

u = v = 0 on (0,T )×∂Ω (5)

is null controllable when O⊂Ω is any nonempty open set.
If a positive answer is known when ω ∩O 6= /0, the situation
is less obvious when ω ∩O = /0. In that case, a positive
answer was given when n = 1 (see [4]) or when n ≥ 1 and
the Geometric Control Condition (required for the exact
controllability of the wave equation) holds for both the open
sets ω and O (see [5]).

Here, we are concerned with a system of two parabolic
equations with only one control input in the first equation,
and for which the linearized system fails to be null control-
lable. In [6], we proved the null controllability of the system

ut −∆u = f (u,v)+1ω h in (0,T )×Ω, (6)
vt −∆v = u3 +Rv in (0,T )×Ω, (7)

u = v = 0 on (0,T )×∂Ω, (8)

where f : R× R → R is a given function of class C∞

with f (0,0) = 0 and R ∈ R is a given constant. Clearly,
the linearized system around the trivial solution u = v = 0,
namely

ut −∆u =
∂ f
∂u

(0,0)u+
∂ f
∂v

(0,0)v+1ω h in (0,T )×Ω,

vt −∆v = Rv in (0,T )×Ω,

u = v = 0 on (0,T )×∂Ω,

is not null controllable, for the dynamics of v is not affected
by h and u. To prove the null controllability of (6)-(8), we
used the return method; that is, we linearized system (6)-
(8) around a (smooth) nontrivial solution of (6)-(8). Next, we
applied the classical approach based on Carleman estimates
to prove first the null controllability of the linearized system,
and next the null controllability of the original nonlinear
system. We also noticed that the null controllability fails
when the coupling term u3 is replaced by u2.

The aim of this paper is to generalize the above result
to more general nonlinear systems, i.e. to systems with a
nonlinear coupling term assuming a more general form than
u3. To simplify the exposition, we will assume that k = 1 in
what follows, and take a system as simple as possible. The
general case will be considered elsewhere.
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Let us consider a nonempty open set ω ⊂Ω := (0,1), and
two maps F : R2 → R, (u,v) 7→ F(u,v) and G : R2 → R,
(u,v) 7→ G(u,v) of class C∞. We assume that

F(0,0) = G(0,0) = 0, (9)

and that

∂ iG
∂ui (0,0) = 0, ∀i ∈ {0, ...,2}, (10)

∂ 3G
∂u3 (0,0) 6= 0. (11)

The control system we consider reads

ut −uxx +F(u,v) = h1ω in (0,T )×Ω, (12)
vt − vxx +G(u,v) = 0 in (0,T )×Ω, (13)

u = v = 0 on (0,T )×∂Ω. (14)

Our aim is to establish the following (local) null controlla-
bility result.

Theorem 1: Let T > 0 and p ∈ (3,+∞). Then there exist
C0 > 0 and ε0 > 0 such that, for every u0,v0 ∈W 1,∞

0 (Ω) with

||u0||W 1,∞(Ω) ≤ ε0, ||v0||W 1,∞(Ω) ≤ ε0, (15)

there exists h ∈ Lp((0,T )×Ω) satisfying

||h||Lp((0,T )×Ω) ≤C0
(
||u0||W 1,∞(Ω)+ ||v0||1/3

W 1,∞(Ω)

)
(16)

and such that the solution of the Cauchy problem

ut −uxx +F(u,v) = h1ω in (0,T )×Ω, (17)
vt − vxx +G(u,v) = 0 in (0,T )×Ω, (18)

u = v = 0 on (0,T )×∂Ω, (19)
u(0, .) = u0, v(0, .) = v0 in Ω (20)

satisfies
u(T, .) = v(T, .) = 0 in Ω. (21)

We note that a similar result can be proved when the
homogeneous Dirichlet boundary condition (19) is replaced
by the homogeneous Neumann boundary condition

∂u
∂ν

=
∂v
∂ν

= 0 on (0,T )×∂Ω. (22)

Let us indicate two possible applications of Theorem 1.
A reaction-diffusion system describing a reversible chem-

ical reaction [7], [8] takes the form

ut = uxx−ap(up− vq) in (0,T )×Ω (23)
vt = vxx +bp(up− vq) in (0,T )×Ω (24)

∂u
∂ν

=
∂v
∂ν

= 0 on (0,T )×∂Ω. (25)

In (23)-(24), a and b denote some positive constants, and
p and q are positive integers. The corresponding reversible
chemical reaction is pA 
 qB. If we incorporate a forcing
term h1ω in (23), we obtain a system of the form (17)-(18)
with the nonlinear terms F and G satisfying the conditions
(9), (10) and (11) (if p = 3). We then infer from Theorem
1 that the complete system is locally null controllable. The
same result is likely true when the exponent p in (23)-(24)

is an odd integer, while the null controllability of the system
clearly fails when p is even.

The Ginzburg-Landau equation

wt = (1+ iα)wxx +Rw− (1+ iβ )|w|2w+h1ω (26)
w = 0 on (0,T )×∂Ω (27)

provides a simple model of turbulence. Here, w=w(t,x)∈C
is the state function, h = h(t,x) ∈C is the control input, and
α,β ,R are real constants. The null controllability of (26)-
(27) was proved in [9], [10] with h ∈ L∞((0,T )×ω,C).
Assume now that the control h takes only real values.
Writing w= u+ iv with u,v real valued, we obtain the system

ut = uxx−αvxx +Ru− (u2 + v2)(u−βv)+h1ω ,(28)
vt = αuxx + vxx +Rv− (u2 + v2)(βu+ v), (29)
u = v = 0 on (0,T )×∂Ω. (30)

If α 6= 0, then we can prove that the linearized system is null
controllable (and the same is true for the nonlinear system).
Assume now that α = 0. The system becomes

ut = uxx +Ru− (u2 + v2)(u−βv)+h1ω , (31)
vt = vxx +Rv− (u2 + v2)(βu+ v), (32)
u = v = 0 on (0,T )×∂Ω. (33)

If β 6= 0, we can apply Theorem 1 to conclude that system
(31)-(33) is locally null controllable. (Here, G(u,v) =−Rv+
(u2 + v2)(βu+ v) satisfies (10)-(11).) Finally, if β = 0, then
the system fails to be null controllable. Indeed, if v0 ≥ 0 a.e.
and ||R− (u2 + v2)||L∞((0,T )×Ω) ≤C, then we have

v(t, .)≥ et(∂ 2
x −C)v0 > 0 in Ω.

The paper is outlined as follows. We sketch the proof of
the null controllability of (6)-(8) in Section 2. In Section
3, we explain why the above method of proof needs to be
strongly modified to deal with the general system (12)-(14).
In particular, a key homogeneity argument will come into
play. The proof of Theorem 1 is sketched in Section 3.

II. SKETCH OF THE PROOF OF THE NULL
CONTROLLABILITY OF (6)-(8)

In this section, we sketch the proof of the null controlla-
bility of the “toy” problem

ut −uxx = 1ω h in (0,T )×Ω, (34)
vt − vxx = u3 in (0,T )×Ω, (35)

u = v = 0 on (0,T )×∂Ω (36)

that was exposed in [6]. (We dropped the terms f (u,v)
and Rv for the sake of simplicity.) The proof of the null
controllability rests on the return method introduced by
Jean-Michel Coron for Euler equations of incompressible
perfect fluids [11], [12]. Roughly speaking, we take the
linearization along a smooth nontrivial trajectory (ū, v̄) such
that

(ū, v̄)|t=0 = (0,0) = (ū, v̄)|t=T .
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There are three steps in the proof. In the first step, we
construct the reference trajectory. In the second step, we
prove the controllability of the linearized system along the
reference trajectory. In the last step, we derive the null
controllability of (34)-(36) by a fixed-point argument.

Step 1: Construction of the reference trajectory
We need the following proposition:

Proposition 1: Let ρ > 0. There exists a function v̄ =
v̄(t,x), v̄ 6= 0 such that

v̄ ∈C∞
c (Rt ×Rx), v̄(t,x) = 0 for |t| ≥ ρ or |x| ≥ ρ,

v̄t = v̄xx + ū3 with ū ∈C∞
c (Rt ×Rx).

The corresponding control reads then h̄ := ūt− ūxx ∈C∞
c (Rt×

Rx). Note that ρ can be chosen arbitrarily small. Using a
translation, we can thus impose that

supp (h̄)⊂ (0,T )×ω.

Using a simple scaling, we see there is no loss in assuming
ρ = 1. Note also that the main difficulty in the proof of
Proposition 1 is the smoothness of ū = (v̄t − v̄xx)

1/3. This
requires to have “some control” on the behavior of v̄ in a
neighbourhood of the set {(t,x) : v̄t− v̄xx = 0}. The function
v̄ is taken of the form

v̄(t,r) =
3

∑
i=0

fi(t)gi(z)

where r := |x|, z := r/λ (t), λ (t) := ε(1 − t2)2,
f0(t) = exp(−(1 − t2)−1)1(−1,1)(t), and g0 ∈ C∞

c (R),
fi ∈ C∞

c (R), 1 ≤ i ≤ 3, and gi ∈ C∞
c (

1
4 ,

3
4 ), 1 ≤ i ≤ 3, are

conveniently chosen. Let k(t,r) := v̄t − v̄xx. The support of
the function k is drawn in Figure 1.

Support

November 23, 2009

r = λ(t)

r = λ(t)/2

r

t

{(t, r); k(t, r) < 0}
{(t, r); k(t, r) > 0}

0 1−1

1

Fig. 1. Support of k = v̄t − v̄xx

Step 2: controllability of the linearized system
Let (ū, v̄) be the reference trajectory designed in Step 1, and
let (u,v) be the solution of the control problem (S)

(S̄)


ūt − ūxx = h̄1ω ,
v̄t − v̄xx = ū3,
(ū, v̄)|t=0 = (0,0),
(ū, v̄)|t=T = (0,0)

(S)


ut −uxx = h1ω ,
vt − vxx = u3,
(u,v)|t=0 = (u0,v0),
(u,v)|t=T = (0,0).

Then w = (w1,w2) := (u− ū,v− v̄) satisfies
w1,t −w1,xx = (h− h̄)1ω ,
w2,t −w2,xx = a(w1, ū)w1,
(w1,w2)|t=0 = (u0,v0), (w1,w2)|t=T = (0,0),

where
a(z1,z2) := (3z̄2

2 +3z1z2 + z2
1).

Note that a(0, ū) = 3ū2 > const > 0 somewhere, say for
t1 ≤ t ≤ t2 and x ∈ ω0 ⊂ ω . Thus a(z1, ū) > const > 0 on
[t1, t2]×ω0 for ||z1||L∞((0,T )×Ω)� 1.

We impose that ĥ := h− h̄ be null for t < t1 and for t > t2.
We aim to drive the system to 0 in the time interval [t1, t2].

We can assume that [0,T ] = [t1, t2], a(z1, ū) > const > 0
for 0≤ t ≤ T , x ∈ ω0, and ||z1||L∞((0,T )×Ω) < ε .

The adjoint system to

w1,t −w1,xx = ĥ1ω in (0,T )×Ω,

w2,t −w2,xx = a(z1, ū)w1 in (0,T )×Ω,

w1 = w2 = 0 on (0,T )×∂Ω,

(w1,w2)|t=0 = (u0,v0) in Ω

reads

−ϕ1,t −ϕ1,xx = a(z1, ū)ϕ2 in (0,T )×Ω,

−ϕ2,t −ϕ2,xx = 0 in (0,T )×Ω,

ϕ1 = ϕ2 = 0 on (0,T )×∂Ω,

(ϕ1,ϕ2)|t=T = (ϕ1,T ,ϕ2,T ) in Ω.

The observability inequality to be proved for ϕ := (ϕ1,ϕ2)
reads: ∫

Ω

|ϕ(0,x)|2dx≤C
∫ ∫

(0,T )×ω0

|ϕ1|2dxdt.

To establish it, we need the following
Proposition 2: (Global Carleman estimate for the heat

equation [1]) There exist some constants s0 > 0, C > 0 such
that for every q∈ L2(0,T,H2(Ω)∩H1

0 (Ω))∩H1(0,T,L2(Ω))
and all s≥ s0, we have∫ ∫

(0,T )×Ω

e−sρ(x)η(t)((sη)3|q|2 + sη |qx|2

+(sη)−1(|qxx|2 + |qt |2)
)

≤C
(∫ ∫

(0,T )×Ω

e−sρ(x)η(t)|qt +qxx|2

+
∫ ∫

(0,T )×ω0

e−sρ(x)η(t)(sη)3|q|2
)

for some smooth function ρ(x)≥C > 0 satisfying

ρx(x) 6= 0 on Ω\ω0 and ∂ρ/∂ν ≥ 0 on ∂Ω,

and for some function η ∈C∞((0,T ),(0,+∞)) such that (see
[13])

η(t) =
{

t−1 if t ≤ T/3,
(T − t)−1 if t ≥ 2T/3.

(37)

Recall that a(z1, ū)≥ const > 0 on [0,T ]×ω0. Letting q =
ϕi, i = 1,2 with

−ϕ1,t −ϕ1,xx = a(z1, ū)ϕ2

−ϕ2,t −ϕ2,xx = 0
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yields for ϕ = (ϕ1,ϕ2) and s large enough∫ ∫
(0,T )×Ω

e−sρ(x)η(t)((sη)3|ϕ|2 + sη |ϕx|2

+(sη)−1(|ϕxx|2 + |ϕt |2)
)

≤C
∫ ∫

(0,T )×ω0

e−sρ(x)η(t)(sη)3(|ϕ1|2 + |ϕ2|2).

Using local energy estimates, we can drop the observation
of ϕ2 in the last integral term to obtain∫ ∫

(0,T )×Ω

e−sρ(x)η(t)((sη)3|ϕ|2 + sη |ϕx|2

+(sη)−1(|ϕxx|2 + |ϕt |2)
)

≤C
∫ ∫

(0,T )×ω0

e−sρ(x)η(t)(sη)7|ϕ1|2.

This yields the desired observability inequality

||ϕ(0, .)||2L2(Ω) ≤C
∫ ∫

(0,T )×ω0

e−sρ(x)η(t)(sη)7|ϕ1|2

to prove the null controllability of the linearized system.
Step 3: Fixed-point argument
For ||z||L∞((0,T )×Ω)� 1 and (u0,v0) ∈ L2(Ω)2, the control h
driving the system to (0,0) satisfies

||h||L∞((0,T )×Ω) ≤C||(u0,v0)||L2(Ω)2 .

It can be shown that for (u0,v0)∈W 1,∞
0 (Ω)2, the map z 7→w

is continuous and compact in the space L∞((0,T )×Ω). An
application of Kakutani theorem yields the existence of a
fixed-point, which completes the proof.

III. PROOF OF THEOREM 1

The main difficulty in the above approach is the con-
struction of a nontrivial, compactly supported, reference
trajectory for

v̄t − v̄xx +G(ū, v̄) = 0.

One can treat the case G = G0 := c1u2k+1 + c2v, k ∈ N,
but there is no hope to do that for an arbitrary function G
fulfilling ∂ iG

∂ui (0,0) = 0 for i≤ 2k and ∂ 2k+1G
∂u2k+1 (0,0) 6= 0.

For G = G0, we observe that

v̄ = O(ū2k+1) as t→ 0+ or t→ T−.

We are led to assign different weights to u et v: we expand
G(u,v) with respect to the dilation

dε(u,v) := (εu,ε2k+1v).

In the general case, the consideration of the Taylor expansion
of G

G(u,v) = G0(u,v)+R(u,v)

leads to keep the reference trajectory associated with G0, and
to consider the term R(u,v) as a disturbance to be balanced
on the time interval (0,T ).

The two approaches are sketched as follows:

T

T

t

t

u
−

t t
1 2

u

u

−
u

= cGG =
2k+1

+ c
20 1

u v

G = G + R 
0

Thus, to balance the (small) term R(u,v), the control has to
be applied up to the time t = T . On the other hand, in order
to limit the control effort, it is desirable to have the support
of ū and its magnitude as large as possible. For simplicity,
we still assume that k = 1.

Let X and Y denote some Banach spaces that will be
defined later on. Consider the map

A : R×W 1,∞
0 (Ω)2×X → Y

(ε,U0,V 0,(U,V,H)) 7→ (A1,A2,U(0)−U0,V (0)−V 0)

defined by

A1 =

{
1
ε
(ut −uxx +F(u,v)−h1ω) if ε 6= 0,

Ut −Uxx + f0U−H1ω if ε = 0,

A2 =


1
ε3 (vt − vxx +G(u,v)) if ε 6= 0,

Vt −Vxx +
1
3 g0((U + ū)3− ū3)+g1V

if ε = 0,

with

u := ε(ū+U), v := ε
3(v̄+V ), h := ε(h̄+H)

and f0 := ∂F
∂u (0,0), g0 := 1

2
∂ 3G
∂u3 (0,0), g1 := ∂G

∂v (0,0).
Denoting by

L=
∂A

∂ (U,V,H)
(0,0,0,(0,0,0))

it holds

L(U,V,H) = (Ut −Uxx + f0U−H1ω ,

Vt −Vxx +g0ū2U +g1V,U(0),V (0)). (38)

To complete the proof with a version of the implicit
function theorem, one has to show that the map L is onto.

We notice that we can pick λ (t) = εt(T − t), 0 < t < T ,
(instead of λ (t) = ε(T 2− t2)2, −T < t < T ) to construct the
reference trajectory satisfying

ūt − ūxx + f0ū = h̄1ω ,

v̄t − v̄xx +
g0

3
ū3 +g1v̄ = 0.

On the other hand, we can as well replace f0 by f µ

0 ∈C∞
c (R)

for any µ > 0. Finally, by a simple translation we can assume
that supp ū ∪ supp v̄⊂ [0,T ]×{|x− x0| ≤ ρ}, with

ū(0, .) = v̄(0, .) = ū(T, .) = v̄(T, .) = 0.

2478



Furthermore, we can impose the following for t ∈ (0,T ),
x ∈ (0,1)

ū(t,x) ≥ c1η
2
3 (t)e−

µ

3 η(t) if |x− x0|< λ (t)/4

|∂ l
t ∂

k
x ū(t,x)| ≤ c2η

2l+k+ 2
3 e−

µ

3 η(t), l,k = 0,1, ...

|∂ l
t ∂

k
x v̄(t,x)| ≤ c3η

2l+ke−µη(t) l,k = 0,1, ...

for some positive constants c1,c2,c3. The support of (ū, v̄)
now contains a cone as t→ 0+ or for t→ T−, since

{|x− x0|< λ (t)/4} ⊃ {|x− x0|< c|t−T |}

for c > 0 small enough. It turns that one can still derive
a Carleman estimate for a heat equation with an internal
observation on a cone-shaped domain.

Proposition 3: (Observation on a cone) There exist some
constants s0 > 0, C > 0 such that for all z∈ L2(0,T,H2(Ω)∩
H1

0 (Ω))∩H1(0,T,L2(Ω)) and all s≥ s0, we have∫ ∫
(0,T )×Ω

e−sρ(t,x)η(t)((sη)3|z|2 + sη |zx|2

+(sη)−1(|zxx|2 + |zt |2)
)

≤C
(∫ ∫

(0,T )×Ω

e−sρ(t,x)η(t)|zt + zxx|2

+
∫ ∫
|x−x0|<λ (t)/4

e−sρ(t,x)η(t)s3
η

4|z|2
)

for a smooth function ρ(t,x)≥ const > 0 satisfying
• |ρx(t,x)|= 1 for |x− x0| ≥ λ (t),
• ρ∗− ε ≤ ρ(t,x)≤ ρ∗ for all (t,x) (with 0 < ε � ρ∗),
• ∂ρ/∂ν ≥ 0 in (0,T )×∂Ω,

and η ∈C∞((0,T ),(0,+∞)) is as in (37).
We pick

µ := s(ρ∗+ ε)

in the definition of the reference trajectory (ū, v̄). Using local
energy estimates, we obtain for any solution ϕ = (ϕ1,ϕ2) of

−ϕ1,t −ϕ1,xx + f0ϕ1 +g0ū2
ϕ2 = h1

−ϕ2,t −ϕ2,xx +g1ϕ2 = h2

ϕ1 = ϕ2 = 0 in (0,T )×∂Ω

the following estimate for all s≥ s0

||ϕ1(0)||2L2(Ω)+ ||ϕ2(0)||2L2(Ω)

+
∫ ∫

(0,T )×Ω

e−sρη
(
(sη)3|ϕ1|2 + sη |ϕ1,x|2

)
+(sη)−1(|ϕ1,xx|2 + |ϕ1,t |2)

)
+
∫ ∫

(0,T )×Ω

e−3sρη
(
(sη)3|ϕ2|2 + sη |ϕ2,x|2

)
+(sη)−1(|ϕ2,xx|2 + |ϕ2,t |2)

)
≤C

(∫ ∫
|x−x0|<λ (t)/2

e(−3sρ+2µ)η(sη)7
η

2|ϕ1|2

+
∫ ∫

(0,T )×Ω

e−3sρη(e2µη s3
η

5|h1|2 + |h2|2)
)
.

Next, proceeding as in [1], [14], we “simplify” the weights
so that they are no longer singular at t = 0. Introduce the
function

l(t) :=
{

η( 2T
3 ) = 3

T if 0 < t < 2T
3 ,

η(t) = (T − t)−1 if 2T
3 < t < T.

We obtain (fixing some s≥ s0)

||ϕ1(0)||2L2(Ω)+ ||ϕ2(0)||2L2(Ω)

+
∫ ∫

(0,T )×Ω

e−sρl(l3|ϕ1|2 + l|ϕ1,x|2
)

+l−1(|ϕ1,xx|2 + |ϕ1,t |2)
)

+
∫ ∫

(0,T )×Ω

e−3sρl(l3|ϕ2|2 + l|ϕ2,x|2
)

+l−1(|ϕ2,xx|2 + |ϕ2,t |2)
)

≤C
(∫ ∫

(0,T )×ω

e(−3sρ+2µ)l l9|ϕ1|2

+
∫ ∫

(0,T )×Ω

e−3sρl(e2µl l5|h1|2 + |h2|2)
)
.

We are then in a position to state a null controllability result
for a system with forcing terms. Consider the system

w1,t −w1,xx + f0w1 = k1ω +F1 (39)
w2,t −w2,xx +g0ū2w1 +g1w2 = F2 (40)
w1 = w2 = 0 on (0,T )×∂Ω (41)
(w1,w2)|t=0 = (w0

1,w
0
2). (42)

Let
ρ∗ := ρ

∗− ε ≤ min
(t,x)∈[0,T ]×[0,1]

ρ(t,x).

Then the following holds.
Proposition 4: For any (w0

1,w
0
2) ∈ W 1,∞

0 (Ω)2 and for
any F = (F1,F2) with esρl l−3/2F1 ∈ L2((0,T ) × Ω) and
e3sρl l−3/2F2 ∈ L2((0,T )×Ω), there is a pair (w,k) solving
(39)-(42) together with (w1,w2)|t=T = (0,0), and such that

e(3sρ−2µ)l l−5/2w1 ∈ L2((0,T )×Ω),

e3sρlw2 ∈ L2((0,T )×Ω),

e(3sρ−2µ)l l−9/2k ∈ L2((0,T )×Ω).

Furthermore, for 0 < γ < (ρ∗−5ε)/(ρ∗− ε), we have

eγsρ∗l l−3/2w1 ∈ L∞((0,T )×Ω),

e3γsρ∗l l−3/2w2 ∈ L∞((0,T )×Ω).
We set

Q := (0,T )×Ω,

and we let X denote the set of functions (U,V,H) : Q→R3

such that

e(3sρ−2µ)l l−5/2U ∈ L2(Q)

e3sρlV ∈ L2(Q)

e(3sρ−2µ)l l−9/2H ∈ L2(Q)

esρl l−3/2(Ut −Uxx + f0U−H1ω) ∈ L2(Q)

e3sρl l−3/2(Vt −Vxx +g0ū2U +g1V ) ∈ L2(Q)

(U,V ) ∈ C([0,T ],H1
0 (Ω)2)

U(0, .) ∈W 1,∞
0 (Ω), V (0, .) ∈ W 1,∞

0 (Ω).
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The vector space X is a Banach space when equipped with
the norm

||(U,V,H)||X := ||e(3sρ−2µ)l l−5/2U ||L2(Q))

+||e3sρlV ||L2(Q)

+||e(3sρ−2µ)l l−9/2H||L2(Q)

+||esρl l−3/2(Ut −Uxx + f0U−H1ω)||L2(Q)

+||e3sρl l−3/2(Vt −Vxx +g0ū2U +g1V )||L2(Q)

+||(U,V )||L∞(0,T,H1
0 (Ω)2)

+||U(0, .)||W 1,∞(Ω)+ ||V (0, .)||W 1,∞(Ω)·

Let Y be the set of (y1,y2,y3,y4) ∈ L2(Q)2×W 1,∞
0 (Ω)2 such

that

esρl l−3/2y1 ∈ L2(Q) and e3sρl l−3/2y2 ∈ L2(Q).

It is a Banach space when equipped with the norm

||(y1,y2,y3,y4)||Y
:= ||esρl l−3/2y1||L2(Q)+ ||e3sρl l−3/2y2||L2(Q)

+||y3||W 1,∞(Ω)+ ||y4||W 1,∞(Ω).

One can see that the map A : R×W 1,∞
0 (Ω)2×X→ Y is well

defined and of class C1, with L = ∂A/∂ (U,V,H)(0) given
by (38). Furthermore, using Proposition 4, we have that L
is onto. The following inverse mapping theorem is needed
(see [15]):

Theorem 2: Let E1 and E2 be two Banach spaces and let
G : E1→ E2 be a map of class C1. Assume that x0 ∈ E1 is
such that G′(x0) : E1→ E2 is onto. Then there exists δ > 0
such that for every y ∈ E2 with ||y−G(x0)||E2 < δ , there
exists x ∈ E1 such that G(x) = y.

Corollary 1: Let B1, B2, and B3 be three Banach spaces,
and let F : B1×B2→ B3 be a map of class C1. Let (x0,y0)∈
B1×B2 be such that ∂F

∂y (x0,y0) : B2→B3 is onto, and let z0 =

F(x0,y0). Then there exists δ > 0 such that for all (x,z) ∈
B1×B3 with ||x−x0||B1 + ||z−z0||B3 < δ , there exists y∈ B2
such that F(x,y) = z.
Corollary 1 follows at once from Theorem 2 by letting E1 =
B1×B2, E2 = B1×B3, and G(x,y) = (x,F(x,y)) for (x,y) ∈
E1. Indeed, G is C1 with

G′(x0,y0)(u,v) = (u,
∂F
∂x

(x0,y0)u+
∂F
∂y

(x0,y0)v).

It is clear that G′(x0,y0) is onto. Therefore, there exists δ > 0
such that for ||x−x0||B1 + ||z−z0||B3 < δ , one may find y∈B2
such that z = F(x,y).

To conclude the proof of Theorem 1, it is sufficient to
apply Corollary 1 to the spaces B1 :=R×W 1,∞

0 (Ω)2, B2 :=X,
B3 := Y, and the map F :=A (taking (x0,y0,z0) = (0,0,0)).
Then there exists some ε1 > 0 such that for (ε,U0,V 0) ∈ B1
with

|ε| ≤ ε1, ||U0||W 1,∞(Ω) ≤ ε1, ||V0||W 1,∞(Ω) ≤ ε1,

one may find (U,V,H) ∈ X such that
A(ε,U0,V 0,(U,V,H)) = (0,0,0,0). The conclusion of

Theorem 1 holds for (u0,v0) ∈W 1,∞
0 (Ω)2 with

||u0||W 1,∞(Ω) ≤
ε2

1
2
, ||v0||W 1,∞(Ω) ≤

ε4
1
2

Indeed, the result is trivial when u0 = v0 = 0. Otherwise, we
let

ε :=

( ||u0||6W 1,∞(Ω)

ε6
1

+
||v0||2W 1,∞(Ω)

ε2
1

) 1
6

, U0 :=
u0

ε
, V 0 :=

v0

ε3 ·

Then 0 < ε ≤ ε1, ||U0||W 1,∞(Ω) ≤ ε1, and ||V 0||W 1,∞(Ω) ≤ ε1.
The conclusion follows with u := ε(ū+U), v := ε3(v̄+V ),
and h := ε(h̄+H).
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