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Robots are increasingly capable and prevalent

Robots, including collaborative robots, are becoming
more capable, better accepted, and more
commonplace.



Unmanned Air Vehicles are here

Estimated number of UAVs in US by
2020: 7 million

Estimated number of commercial UAVs
in the air by 2018: 600,000

Number of UAVs registered with the
FAA: 770,000

Flying the crowded skies

Amazon proposes slicing U.S. airspace into different categories of unmanned aircraft

Estimated value of UAV industry: $ 3.3
billion

Projected value of UAV industry in
2025: $ 90 billion
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Self-driving cars are being tested

Self-driving cars: from 2020 you will

TESLA'SCARSNOW DRIVE become a permanent backseat driver
THEMSELVES, RINDA

Driverless cars will revolutionise motoring, claim the
manufacturers. But is the greatest danger that they will be too
safe?

uuuuuuuuuuuuuuuuu
A A BMW "highly automated prototype on the German autobahn. Photograph: PR

Self-driving cars: it’s only a
matter of time until they
take over

11 hours

The maximum amount of time
et mter piion truckers can spend at the wheel

before being penalized, under a
new federal law.

MIT Technology Review

Self-driving trucks are coming—and this law just made things
even worse for truckers




Safety/validation concerns are relevant

A Tesla Driver Died in a
Crash While His Car Was
on Autopilot
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My research: control/autonomy for multi-vehicle systems

L Research at the intersection of computer
science, systems theory and control
systems for aerospace and autonomous

vehicle applications
L Emphasis on interacting systems (multiple
vehicles, actors, or subsystems)

0 Mixed-initiative operations (manned and
unmanned vehicles, adjustable autonomy):

O Human pilot/driver modeling (game
theory),

O Integration of unmanned vehicles into
the airspace,

O Task scheduling, allocation and

a

Flying the crowded skies Yo

Amazon proposes slicing U.S. alrspace into different categories of unmanned aircraft

planning with adjustable autonomy,
Collaborative/adversarial
environments.




... and integrated control of multiple vehicle subsystems

O Integrated vehicle control, including coupled control of
the propulsion and power systems for aircraft, with the
inclusion of heat management constraints, in light of more
or all electric aircraft, design considerations for the 6th

generation fighter, and the increasing use of small UAVs.

QO  Predictive and nonlinear control, as made possible by
increasingly capable flight hardware.

How the More Electric Aircraft has changed the NEAT Configured to Testa Lightly Electriflying P
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Research in distributed control of AV
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Today’s Topic
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1995-2005s: M_ostly ignore_the humans




2005-15: Control theory for humans

Intelligence, Surveillance, and Reconnaissance missions

@ Unmanned aerial vehicles

(UAVs)

e carry a suite of sensors and a
communication device
@ Human operators
o direct the UAVs
e inspect data and make
classification decisions
@ Need high quality classification
decisions in the presence of
uncertainties




“Inverting the ratio”

Some results:

More information (in the sense
of Shannon) does not

., guarantee better classification
2 ' N performance.
F I“_-,_I. T -

Workload-Independent - — 1
Trichotomous Classifier Workload

Performance

]

* Knowing what the information
is used for (e.g., classification)

. Yes
undecidables 4 W @ allows one to collect more
No useful information.

* Team theory (how to combine

. classifiers, how to give
E . End e E feedback to human operators)

FN | FP *
Q F J T -

o g~ hgh * Main lesson: Humans exhibit a

lot of variability, and are
difficult to model



AV Challenges

In the near to medium term, AV penetration will
be small

AVs will operate in traffic together with human-
driven vehicles (HVs)

Percentage of registrations

AV control algorithms must account for the
interactions between AVs and HVs

This is a harder problem than in an “all-AVs” world



Why do we need traffic simulation?

AV control algorithms must account for the interactions between AVs and HVs

Estimated that one must drive >100 million kilometers to validate autonomous driving software
and assure against “faults” in the algorithms, e.g., conditions under which the algorithm may
cause unsafe driving behavior

Verification and validation (V&V) in virtual world (i.e., using simulation tools) is appealing.
However, simulators must be able to represent realistic vehicle interactions in traffic

This leads to the question: How to model and account for the interactions between AVs and HVs?

Table 1. Examples of Miles and Years Needed to Demonstrate Autonomous Vehicle Reliability

Benchmark Failure Rate

How many miles (years®) would (A) 1.09 fatalities per (B) 77 reported (C) 190 reported
autonomous vehicles have to be 100 million miles? injuries per 100 crashes per 100
.. c |driven... million miles? million miles?
DrIVI ng to SGFGI’Y BB (1) vithout failure to demonsirate with 95% 275 million miles 3.9 million miles 1.6 million miles
3 confidence that their failure rate is at most... (12.5 years) (2 months) (1 month)
How Many Miles of Driving Would It Take to Demonstrate B | (2) to demonstrate with 95% confidence their 8.8 billion miles 125 million miles 51 million miles
Autonomous Vehicle Reliability? ?:_. failure rate o within 20% of the true rate of... (400 years) (5.7 years) (2.3 years)
g (3) to demonstrate with 95% confidence and 11 billion miles 161 million miles 65 million miles
Nidhi Kolra, Susan M. Paddock 80% power that their failure rate is 20% better (500 years) (7.3 years) (3 years)
than the human driver failure rate of...

2 We assess the time it would take to compete the requisite miles with a fleet of 100 autonomous vehicles (larger than any known existing fleet] driving 24 hours
a day, 365 days a year, at an average speed of 25 miles per hour.




Game Theoretic Traffic Simulation

‘ v =27.2222 m/s @ 20
10
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Main Collaborators: llya Kolmanovsky, Yildiray Yildiz, Nan Li, Ran Tian.




Game theory

Game theory: The study of strategic decision-making

The payoff (reward/cost) received by each participant depends on her own action and
the actions of the other participants of the game.

Game g Traffic Scenario
Participants <« Drivers/Vehicles
Payoffs — Driving Objectives (Safety, Performance, Comfort, ...)

Conventional tool: Nash equilibrium
Problems:
1) Outcomes of experimental subjects systematically violate Nash-equilibrium predictions

2) Nash equilibrium is difficult to compute for multi-player games (traffic scenarios with
multiple interacting vehicles)



Game theoretic approaches for traffic simulation

Hierarchical reasoning/Level-k approach221|  Leader-follower/Stackelberg-like approach [3]

4 | )

* Players have bounded rationality and are .
. ) " . . * Players have asymmetric roles: Leader vs
categorized by the “depth” of their strategic Follower

reasoning (called level).

* The leader moves before the follower and
has the first-mover advantage: The leader
can influence the follower’s decision through
her own action choice.

* Alevel-k player assumes all other players are
level-(k-1) and makes her own decision as the
optimal response to their level-(k-1)
decisions.

* Use the leader-follower asymmetry to

* Use different k to model different driving represent “right of way” rules

styles (aggressive/conservative) and driving

\_ intentions (proceeding/yielding) VA RN J

[1] Li, Oyler, Zhang, Yildiz, Kolmanovsky and Girard (TCST 2018). [3] Li, Yao, Kolmanovsky, Atkins and Girard (TITS 2020).
[2] Tian, Li, Kolmanovsky, Yildiz and Girard (TITS 2020).



Hierarchical reasoning game theory

Modeling humans precisely is difficult (Variability,
small data sets).

Hierarchical reasoning game theory (level-k game
theory) attempts to describe human thought
processes in strategic games. Assumes that players
base their decisions on their predictions of the likely
actions of other players.

Players in strategic games can be categorized by the
“depth” of their strategic thought. Players have
bounded rationality.

Level-k theory predicts human decisions better than
equilibrium-based models in a range of games.
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An example: the Keynesian “beauty” contest

Keynesian beauty contest: Pick a number between 0 and 100. Winner is the person whose
number is the closest to half of the average of all the (many) participants' guesses.

Level zero players: choose a number non-strategically (at random, 42 for Doug
Adams, birthday, etc.)

Level one players: choose their number consistent with the belief that all other
players are level zero. If all other players in the game are level zero, the average of
those guesses would be about 50. Therefore, a level one player chooses 25.

Level two players: choose their number consistent with the belief that all other
players are level one. Since a level one player will choose 25, a level two player should

choose 12 or 13. This process repeats for higher-level players.

Studies from other domains show humans are usually level 0, 1 or 2, rarely 3.



Level-k reasoning and reinforcement learning

Reinforcement
Learning
0 i T 1
ﬁ —Levell
- —Level2
Learning agent Level-k policy g |
o
- ";.f,-mo
" . - _. -_— H ‘d>_)
Level-0 policy <150
200" ‘ |
0 1 2 3 4 5
Level-(k-1) policy Training episodes  10*

Level-0 agent makes instinctive decisions and does not take into account the interactions.
Level-1 agent assumes all of the other agents are Level-0 and makes optimal responses based on this assumption.

Level-k agent assumes all of the other agents are Level-(k-1) and makes optimal responses based on this
assumption.

To obtain the level-k policy, we put a learner in traffic consisting of level-(k-1) drivers, and use reinforcement
learning to train the learner. In other domains, humans have been shown to usually be levels 0, 1 or 2 decision
makers.



Markov Decision Processes

* Markov Decision Process (MDP): A stochastic transition system + a reward function
= A set of states, §
= A set of actions, A
= A transition probability function, T: § x A x § > R*
= Aninitial state, sp € §
= Areward function,R: § x A x§ > R*

* If action ais applied from state s, then a transition from state s to state s’ occurs with probability T(s, a, s’). If this
transition is made, a reward R(s, a, s’) is collected.

* Both transition probabilities and rewards only depend on the present state, not on the history of the state (future
states and rewards are independent of the past, given the present).

* The state is known exactly (only the transitions are stochastic). If the state is not known exactly: Partially
Observable Markov Decision Process (POMDP).



MDP for highway driving

O Control Hierarchy. Focus: Higher-level Controller

* Set of states:
* 3 states per vehicle, longitudinal position and
velocity, lateral position
* 30-50 vehicles in simulation

_— > Environment

Vehicle Observation
e Set of actions: 7 dimensional

Higher-level Controller * Maintain .
* Change lane left/right

Accel, decel, change lane, * Accelerate/decelerate (regular maneuver)
* Emergency Accelerate/decelerate

Lower-level Controller ¢ Reward/Penalty: (safe distance) constraint violation,
l Engine torque, vehicle speed, maneuver effort, headway

gear, steering, ...
R = wyc +wyv + wze +wyh

Vehicle Dynamics * Observation space (POMDP): 18-dimensional

I * Observe states of 5 neighboring vehicles + self
]




Q Learning (Reinforcement Learning)

In some cases, the exact details of the MDP (the transition probabilities) are not known. Q-learning (a
reinforcement learning technique) estimates the total collected reward for state-action pairs.

The Q-factor, Q(s, a), is an estimate of the total collected reward collected by
i. starting at state s,
ii. applying action a at the first time step,

iii. acting optimally for all future times.

The Q-factor update law, based on an observed transition from s to s’ under action a, is

Q(s,a) < (1 —ay)Q(s,a) + ayr(R(s,a,s") + 7y max Q(s',a"))

Exploration/Exploitation trade-off created.

y is a discount factor (Bellman equation); a; should decay over time for convergence (for example, as 1/t).
May use approximation techniques to deal with large state spaces. This may cause instability.

Use Jaakkola version for POMDP.



Application to highway driving

* Policy: a rule that determines a decision given the available information at state s.

7 (s) = argmax Q*(s,a) Vs € S

* In practice:

Discretize states (message elements).
Create simulation environment, initialize with n cars.
Assign the level-0 policy to n-1 cars. This “replaces” the need for a transition probability model for those
cars.
* Level-0: Drive at constant speed unless vehicle in front. If vehicle in front, maintain headway.

Use Jaakkola RL to obtain Q(m,a) for the ego car. The message m replaces the state s in POMDP problems.
Simulation time: approximately 2 days.

Obtain stochastic policy from Q(m,a).
* A deterministic policy always returns the same action (that with the highest expected Q value).
* A stochastic policy models a distribution over actions and draws an action according to this distribution.



Game theoretic highway driving

i )
O A dynamic game of two players - Two players * State of the game * Actions of the players
<P,X,U,T,R> P={1,2} x = (21, 2%) € X u=(u'u?) e U=U"'xU?
* Dynamics of the game, can be stochastic
T:(x,u) = x" P(x*|x,u) = T(x,u,x") € [0,1]
» Reward functions of the players
R = {R' R?} R:XxU—=R
- J
4 ‘ ] . ' . N
U A (stochastic) policy of player i Tix —u P(u'lx) = 7'(x,u") € [0, 1]
. J
. : )
O A level-k policy of player i optimally responds to level-(k-1) policy of the other
N
7k € argmax E {Z R (xp, uf, up) | ug ~ (g, ), uf ~ 72 (xy, )}
! t=0
\ J




Game theoretic traffic modeling results

Level-1 vs Level-0

v, = 27.2222 m/s
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Level-2 vs Level-1

v, = 19.7222 m/s
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Mixed traffic (10% Level-0, 60% Level-1 and 30% Level-2)
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s level-k a good model for humans?

* Level-k theory has been shown by numerous experimental
results from cognitive and behavioral science to predict
human decisions better than conventional analytic methods
(such as equilibrium-based models) in a range of games.

* We have also developed our own experiment to validate its
effectiveness 14l

2020 American Control Conference
Denver, CO, USA, July 1-3, 2020

Beating humans in a penny-matching game by leveraging
cognitive hierarchy theory and Bayesian learning

Ran Tian, Nan Li, Ilya Kolmanovsky, and Anouck Girard
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The levels of thought in poker.

Working out what your opponent may be holding is not easy, and it re
"Multiple Level Thinking" is a concept that was brought forward by De
defines the different levels of thought that a poker player can occupy:

o Level 0: No thinking.

o Level 1: What do | have?

o Level 2: What do they have?

o Level 3: What do they think | have?

« Level 4: What do they think | think they have?

« Level 5: What do they think | think they think | have?

| think | should probably leave it there now because of the fact that it
addition to the fact that it is getting pretty difficult for me to even write
you can see, you can think on different levels whilst playing poker, wi
the more advanced players of the game playing at 4 or above.



s level-k a good model for humans?

Al vs real humans

Level-k Theory Application to a Penny-Matching Game 4!

T
Proposed strategy based on CHT and BL
Nash-equilibrium strategy 4

40 1 ‘

P

OW

* An Al algorithm was developed to play a repeated penny-matching game.

* The Al player models the human player as a level-k decision-maker with
online identification of her k value.

* Based on the identification result, the Al player maximizes its own chance
of winning.

Time history of Al player accumulated payoff
s
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Al won, Human lost Al lost, Human won 50 40 30 20 -0 0 10 20

Human player accumulated payoff after 150 rounds



Is level-k a good model for driving?

Naturalistic data analysis — Highlights (Collaborators -- Shan Bao, Huayi Li)

— We studied naturalistic data from the Safety Pilot Model Deployment (SPMD) program
led by UMTRI. Valid driving data come from 79 vehicles equipped with Data
Acquisition System and Mobileye.

— Our analysis shows that, out of more than 0.3 million miles of highway driving
episodes in car-following scenarios, all vehicles have exhibited level-0, level-1 and
level-2 characteristics based on previous definitions adopted by the traffic model, with
a ratio of 11%, 46%, 43% respectively, which are close to our traffic model
assumptions.




Is level-k a good model for driving?

Naturalistic data analysis — Level-0

— Level-0 characteristic filter: In each event, the driver travels in the same lane with the speed between
55mph and 75mph (i.e., no speeding) and with traffic around.

— All 79 valid SPMD vehicle drivers exhibited Level-0 characteristics. Average level-0 ratio is 0.11. This
means about 11% of the highway driving events show level-0 characteristic, which is close to the
assumption of the simulator.

— Distribution of number of events vs. event duration:

00000 T T T T
The average duration is 24.5 seconds.
90.8% of events are within 1 minute.

uuuuuu

000000

Number of events

5 2 25 3 35
Events duration (Minutes)



Is level-k a good model for driving?

Naturalistic data analysis — Level-0

— An example of level-0 driving:

= Driver remains in one lane without lane changing or speeding for approximately 19.2 minutes with an average speed
of 71 mph, which is the longest event we have observed.




Is level-k a good model for driving?

Naturalistic data analysis — Level-1 and
level-2

— Level-1 and level-2 characteristic filter: the
driver travels with a minimum speed of

55mph with traffic around, which is similar to
the level-0 filter except that lane change and

speeding behavior were observed.

— We then apply the unsupervised learning

algorithm, K-means ++ clustering, to
categorize the events into two groups, and

match them to level-1 and level-2 behaviors
based on traffic model assumptions.

— Clustering by the K-means ++ method >

--- Level 2
Level 1

Range



Is level-k a good model for driving?

Naturalistic data analysis — Summary

— The average ratios of level-0, level-1 and level-2 are 11%, 46% and 43% based on total distance traveled on the
highway.

— Examples of behavioral differences:
= Level-0is the most defensive, keeping the largest distance from the vehicle in front without speeding or lane

changes.
= Level-1is the most aggressive, keeping the smallest distance from the vehicle in front and the largest ratio of

speeding.
® The characteristic of level-2 is between level-1 and level-0. Compared with level-1, it has lower number of lane
changes and ratio of speeding.

Avg. Avg. Lane

Event Avg.. Ave. Range Ave. Accelerati| Speeding | Changes
Duration Range Speed .

Numbers (sec.) (m) Rate (m/s) on Ratio per 100

' (m/s) (m/s?) Miles

Level-0 91546 24.52 71.72 0.15 29.83 -0.18 0 0
Level-1 61034 | 143.40 49.65 -0.56 32.96 -0.16 0.45 143.88
Level-2 | 144708 60.22 60.74 -0.48 31.62 -0.17 0.29 111.26




Interactive traffic simulator

Conventional simulator:

* Ego AV is the only intelligent decision-maker.

* Motions of the other vehicles prescribed as
functions of time or responding to traffic state
using simple rules.

Interactive simulator:

* Ego and other vehicles are all intelligent
decision-makers and interact with each other.

* When ego AV takes different actions, the
other vehicles will respond differently.

Modeling other vehicles in
traffic using the level-k models!




Integration with high-fidelity simulator (TORCS)

Interactive Traffic Simulator [°]

Packaged,

independent Traffic state values read

v, =24.7222mls @ of simulator through simulator API
. . | A

& &

2
- o : policies
Q) ) required format

— 1
‘ ‘ Action commands or
J desired vehicle states

levell 7 Lap: 23/30

\ 4

Adjusted based on
simulator interface Controller:

- . convert commands
and vehicle dynamics : b
into control signals

Control signals (gas/brake
pedal, steering wheel angles, ...

F —

Vehicles in
simulator

A 4

Simulator API

g

The Open Racing Simulated vehicle |

Car'Simulator

and traffic dynamics Traffic state values read
through simulator API

Integration of level-k models and 80 km/h
[5] Su, Li, Yildiz, Girard and Kolmanovsky (CPHS 2019). high-fidelity driving simulator



Integration with high-fidelity simulator (TORCS)

levell 7 Lap: 23/30 16/30 Lap: 8/30

Time: 00:44
Best: 40:67

Player

-

Gl TITTTTTT

80 km/h el
2 1

https://cps-vo.org/group/verification_tools/tool/GTTS



Un-signalized Intersections

(Y

Four-way intersection Roundabout

Represent roughly 50% of intersection crashes in the US
Require a balance between overly aggressive actions (that do not take into account behavior of

others) and overly conservative actions (deadlock)
Challenges: predict other drivers’ actions (interactive), take optimal decision corresponding to the

prediction



Un-signalized intersections: Scenarios

2-vehicle interactions at:

20 IEI 20 lil
R N I Y N
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Unsignalized four-way intersection Roundabout




MDP for intersections
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* Set of states (MDP, not POMDP):
* 4 states per vehicle, longitudinal and lateral
positions, speed, yaw angle
* 2-vehicle interactions at first

* Set of actions: 6 possible combinations
* Acceleration
* Yaw rate
* Reward/Penalty: (safe distance) constraint violation,

vehicle speed, maneuver effort, headway

R=w,R; + wyR, + w3R; + W,R, + W:R;

penalty for collision, R,: penalty for being_too close, R5: penalty for driving off road,

R, penalty for driving in wrong lane, R reward for approaching objective lane



Un-signalized intersections: Results!?]

15
10 5
10
5 5 4 0
@ Level-1 O 3}
Level-1 o o Q .
@ Level-2 - N
, 5 1
° v, = 2.5m/s -10
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" vy =25mis v,=25mis B
s vy =25m/s -5 0 s o
s 0 5 0 5 10 15 45 10 5 0 5 10 15
15
15
10 5
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5 5 0
@B cvel-2 O 3]
Level-2 o 0 =
@ Level-1 .
* v, =25m/s
v, =2.5m/s 40
-10 —
vy =2.5m/s
-15

LO driver treats the other car as a stationary obstacle and does not take her potential actions into account — aggressive



Un-signalized intersections: Larger network!?!
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num. of level-1 cars: 10
num. of level-2 cars: 10

num. of adaptive cars: 10
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Un-signalized intersections: Validation!

Validation against Traffic Data [2!

' ' v,=5mis

v2=5m/s v2=5m/s v2=3m/s v2=5m/s
v3=3.5 m/s v3=3.5 m/s v3=2.5 m/s

Top: A traffic scenario extracted from the INTERACTION dataset Top: A traffic scenario extracted from the INTERACTION dataset

Bottom: Simulation snapshots of a level-2 vehicle (blue) interacting Bottom: Simulation snapshots of a level-2 vehicle (blue) interacting

with a level-1 vehicle (yellow) with two level-1 vehicles (yellow and red)



Generalization to n—vehicle scenarios

* POMDP:

40/ ; * The ego car considers its interactions with its
two nearest neighbors
20 0
‘ D O
0
20
0
0
-40 : .
-40 -20 0 20 40
[m]

[m]

-60

1/20/21 46



Generalization to arbitrary road geometries

1/20/21

-40 -30 -20 -10 0 10 20 30 40
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Using the simulator for control design

Interaction-Aware Decision-Making for AVs ®]

Game Theory ﬂ !
Generate a set of interactive driver behavior models, corresponding to '-li
different driving styles (aggressive/conservative) and driving intentions bl
(proceeding/yielding).

s S ()

Bayesian Inference
Identify the model(s) that most accurately characterizes the present | (]
interaction scenario based on observed vehicle trajectories, with i m
corresponding identification confidence. :

’ § p——

Stochastic Model Predictive Control ) )
Make decisions for ego AV, accounting for driving objectives (crossing, ;V
merging, ...) and providing probabilistic collision-avoidance guarantee.

1/20/21
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[6] Li, Li, Girard and Kolmanovsky (CDC 2019).



Using the simulator for control design

Observations

Traffic Scenario

_____________ R 4

. ame-Theoretic
Scenario Set Game-Theoreti

Control

l Behavior Decision for Ego AV

Online tasks

- Driver Behavior Models
. - AV —
————————————— R G , P =
-9 @@ 3 —1a wm  —
D © W >
L3 aa
. L. ) \ Models for highway
Interaction-Aware Decision-Making
\
Model Identification A — / A
»| Based on Bayesian 4—| @ e E= =
Inference _\ -
7} I Models for merging
] 3 @
Human-Driver El'
Behavior Prediction <—| \Interaction Models o ——
« o o o %
| | SMPC @ -
_ B s Pt . Models for
. . < Driving Objective . int i
Decision Making ~ ¥ \  Intersections )
< Safety Constraints n

-

Offline tasks




Using the simulator for control design

Interaction-Aware Decision-Making for AV [6]

&

v

Model Identification
Based on Bayesian
Inference

[} ]

1 L 2

Behavior Prediction

Augmented state X = (X, 0)

Physical state (observable) Model Id (hidden)

o' o

r

Decision Making

Homan-Driver Model predictions P (u; = ulx;,0) = 77 (xy, u)
\Interaction Models
. 2 2
Observations § = {Xo, sy Xty Ugy - 7ut—1}
Driving Objective

Behavior Decision for Ego AV

Control

Safety Constraints

‘ Bayesian inference formula

b, : P(U[ft)

N
E {Z Rl (X7—|t, U71_|t, U3_|t) ‘ bt}
7=0

P(XT+1|t € Xgafe, T =

Identification confidence (belief)

SMPC

.....

0,...,N|b) >1—¢



Interaction-Aware Decision Making for AVs

The AV does not know the driving styles/intentions of the two interacting vehicles a priori.
Same initial condition, different interaction behavior!

15 T T 15 T T . T
10 - 10
5 5
0 0 0
5t 1 5F 5t 4
v, =25m/s v, =25mls v,=2.5m/s
v, = 2.5m/s Uy B 2.5mls v, = 2.5mls
" v,=25mis | or v, =2.5mls 0 v;=25mis |
15 -15 - 15
15 10 5 0 5 10 15 -15 10 -5 0 5 10 15 15 10 5 0 5 10 15
@ Lcvel-1 (conservative) @B | cvel-2 (aggressive) @ [cvel-1 (conservative)
Level-1 (conservative) Level-2 (aggressive) Level-2 (aggressive)

N AV N AV @ AV



Interaction-Aware Decision Making for AVs

v, =25m/s | v, =25m/s

v,=2.5m/s VG 2.5m/s

vy = 2.5m/s vy = 2.5m/s

0 5 1‘0 1‘5 0 ‘5 10 15
@ [ cvel-1 (conservative) @ cvel-2 (aggressive)
Level-1 (conservative) Level-2 (aggressive)

N AV N AV

The AV does not know the driving styles/intentions of the two interacting vehicles a priori.
» Same initial condition, different interaction behavior!

@ [cvel-1 (conservative)
Level-2 (aggressive)

| AV



Interaction-Aware Decision Making for AVs

* The AV does not know the driving styles/intentions of the two interacting vehicles a priori.
« Same initial condition, different interaction behavior!

@ Lcvel-1 (conservative) @ [ cvel-2 (aggressive) @B cvel-1 (conservative)
Level-1 (conservative) Level-2 (aggressive) Level-2 (aggressive)
L \Y L \Y L \Y



Interaction-Aware Decision Making for AVs

20

10

o

-10

Roundabout scenario [71:

AV vs Level-1

v=25m/s

=0

D v =3.125m/s

type prediction: 2

-10 0 10 20

20

* The AV does not know the driving style/intention of the interacting vehicle a priori.
» Same initial condition, different interaction behavior!

We let a human operator control the red car using the keyboard.

AV vs Level-2

v=25mls

ﬂ v=3.125m/s

type prediction: 2

-10 0 10 20

20

o

AV vs Human 1

v=25m/s

D v =3.125m/s

type prediction: 2

-10 0 10 20

20

AV vs Human 2

v=25m/s

= O

B v=3.125m/s

type prediction: 2

-10 0 10

20

[7] Tian, Li, Li, Kolmanovsky, Girard and Yildiz (CDC 2018).



Congluding Remarks

. Autonomous vehicles (AVs) will likely operate in traffic together with
human-driven vehicles (HVs). Their control algorithms must account for the
interactions between AVs and HVs.

2. Game theory is a useful tool for modeling such interactions.

. The generated interaction models have various applications, e.g., for AV
control system testing and for interaction-aware AV control.

. It 1s possible to apply the proposed game-theoretic approaches to modeling
interactions of other traffic participants, e.g., pedestrians, cyclists, etc.



Backup




Traffic Rules for Intersections

Incorporating “Right of Way” Rules through a
Leader-follower/Stackelberg-like Formulation

5 ‘(1)

|
1
|
|
I

2)

.

f (1) If vehicles i, j have both entered the intersection, the vehi- \

cle with a strictly smaller signed distance to the exit of
the intersection is the leader.

(2) If at most one of vehicles i, j has entered the intersection,
the vehicle with a strictly smaller signed distance to the
entrance of the intersection is the leader.

(3) If no leader has been assigned to (i, j) according to (1)-
(2), then the vehicle on the right is the leader when the
two vehicles are coming from adjacent road arms.

(4) If no leader has been assigned to (i, j) according to (1)-
(3), then the vehicle going straight is the leader when the
other vehicle is making a turn.

J

-

Algorithm 1 Leader-follower role assignment

Input : an ordered pair of vehicles (i, j) and their states
(Si (’)a Sj (t))

Output: whether i is the leader of j

1if (Ap{"(t) <0 and Ap$"(t) <0) and
ApEE(t) < ApSE(r) — 6 then i < j;

2 else if (Ap{"(t) > 0 or Ap]‘."(t) > 0) and
Apft(t) < Ap;”(t) —Jd theni < j;

3 else if i and j are coming from adjacent ways and i’s
way is on the right of j’s way then i < j;

4 else if i is going straight and j is making a turn then
i<j;

selsei > j.

~




Affordance indicators/Automated driving FSM

L) ()

A

C: Cruise control mode

U A: Adaptive cruise control mode

L: Lane change mode

Affordance indicators:

The range to the preceding car in the left lane, and the corresponding range rate,

The range to the preceding car in the current lane, and the corresponding range rate,
The range to the preceding car in the right lane, and the corresponding range rate,

The range to the car following behind in the left lane, and the corresponding range rate,
The range to the car following behind in the right lane, and the corresponding range rate.



Testing and calibration in UM traffic simulator

Red car = FSM controller, Yellow cars = level-k game theory

v, = 25.3472 m/s

e
b33

N
(o))

Speed [m/s]
N
N

o
N

0 10 20 30 40 50 0 10 20 30 40 50
Time [s] Time [s]



Testing and calibration in UM traffic simulator

Finite State Machine (rule-based)

V.= 25.6418 m/s

(3
-

&

®$

O h

&

Human Driver

v, = 24.7222 m/s

@,

)

]

Zhang, M., Li, N., Girard, A., & Kolmanovsky, I. (2017, October). A Finite State Machine
Based Automated Driving Controller and its Stochastic Optimization. In ASME 2017
Dynamic Systems and Control Conference (pp. V002T07A002-V002T07A002). American

Society of Mechanical Engineers.




Stochastic optimization of FSM parameters

UV, — V., ;
Rop; R=y,(—c) +y,——=

max — Vmin

c is the safety distance constraint violation rate, v, is the
average speed.

Different combinations of weights:
Myi=Ly2=0;
2)y1=0y2=1

The user can pick the best pair of parameters based on
their objective function design.

* To obtain the best action sequence, a reward is evaluated after
each action. A weighted sum of the 2 levels’ rewards is
. e Wi
computed to represent how good that action sequence is.— is
12
the weight ratio for the 2 levels.

* xj is the size of a safe zone in the longitudinal direction. If this
safe zone is violated, the host car decelerates.




Bridging Past, Present and Future

CONSISTENT
SAFETY CRITICAL
COMMERCIAL
COMPETITIVE
CERTIFIED
CONGESTED
CONTESTED

AUTONOMOUS
COLLABORATIVE
INTELLIGENT
LOW-COST
RECONFIGURABLE
MULTI-AGENT
HUMAN-CENTERED



Opportunities for Engineering

U New players (Space X, Blue Origin, UAV
companies, self-driving car technology)
create demand for a new engineering
curriculum

U Computing (new forms of computation,
parallel, neuromorphic, quantum), Al
and data literacy will have to be
mainstream knowledge like maths and

physics

Flying the crowded skies o ,ﬂ,’-_’
Amazon proposes slicing U.S. airspace into different categories of unmanned aircraft ge [
500 feet: No fly zone = | /

400 feet: High-speed transit




A 4th Industrial Revolution?

WHAT'S

TODAY LOOKS LIKE YESTERDAY GOING ON?

-
YOU ARE
Mechanization, Mass production, . HERE
P . Computer and Cyber Physical
water power, steam  assembly line, . *
A automation Systems
power electricity

1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030

Mathematical rigor vs experimental validation

Deterministic vs stochastic e Leverage the abundance of computation power

Physics vs data based « Adapt/replace standards for the future
* Discuss certification of new technologies
Gap between “cutting edge” and “rigor” * Prepare for tradeoffs and new paradigms

in an era of exponential technologies
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2006 — Current: Assistant/Associate Professor, Aerospace Engineering, University of Michigan
2004 - 2006: Assistant Professor, Mechanical Engineering, Columbia University
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Current/Recent Research

PE games \ TSP stability Game
Autonomy and (UAV) / x regions theoretic
Decision Making %\ / (UAVs) traffic
¥ simulation l
;M// f 20 :ﬁ
_ UAV Information . . Formation
Path Planning, integrat collection \ flight :
Trajectory Opt. ion in
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