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Robots, including collaborative robots, are becoming 
more capable, better accepted, and more 
commonplace.

Robots are increasingly capable and prevalent



Unmanned Air Vehicles are here

q Estimated number of UAVs in US by 
2020: 7 million

q Estimated number of commercial UAVs 
in the air by 2018: 600,000

q Number of UAVs registered with the 
FAA: 770,000

q Estimated value of UAV industry: 💲3.3 
billion

q Projected value of UAV industry in 
2025: 💲90 billion

q Percentage of Americans who own a 
“drone:” 8%



Self-driving cars are being tested



Safety/validation concerns are relevant
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Fatal rate since Entry Into Service - valid end 2009

Fatal

per million departures

Sources: Ascend, Airbus

All aircraft

1st generation

2nd generation

3rd generation4th generation

2nd generation:1st generation:
Early jet 2nd jet generation

3rd generation:
Glass-cockpit
Nav display
FMS

4th generation:
FBW
Flight Envelope
Protection

Years Of Operation 

D. Chatrenet, Air transport safety technology and training, 
ETP 2010 



My research: control/autonomy for multi-vehicle systems

q Research at the intersection of computer 
science, systems theory and control 
systems for aerospace and autonomous 
vehicle applications

q Emphasis on interacting systems (multiple 
vehicles, actors, or subsystems)

q Mixed-initiative operations (manned and 
unmanned vehicles, adjustable autonomy): 
q Human pilot/driver modeling (game 

theory), 
q Integration of unmanned vehicles into 

the airspace, 
q Task scheduling, allocation and 

planning with adjustable autonomy,
q Collaborative/adversarial 

environments.



... and integrated control of multiple vehicle subsystems
q Integrated vehicle control, including coupled control of 

the propulsion and power systems for aircraft, with the 
inclusion of heat management constraints, in light of more 
or all electric aircraft, design considerations for the 6th 
generation fighter, and the increasing use of small UAVs. 

q Predictive and nonlinear control, as made possible by 
increasingly capable flight hardware.



Research in distributed control of AV
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Autonomy and
Decision Making

Path Planning,
Trajectory Opt.

Energy
Management

Unusual 
Configurations

PE games 
(UAV)

Game 
theoretic
traffic 
simulation

TSP stability 
regions 
(UAVs)

UAV 
integrat
ion in 
airspace

Information 
collection

Formation 
flight

MEA/AEA/ fighters Automotive

Disjunctive 
sensing/
control

ACGyrocart

-10

-5

0

5

Y: In-Track [km]-5

0

5

X: Radial [km]

-1

-0.5

0

0.5

1

Z
: 

C
ro

s
s
 T

ra
c
k
 [

k
m

]

Reference Trajectories
Spacecraft 1
Spacecraft 2
Spacecraft 3



1995-2005s: Mostly ignore the humans



2005-15: Control theory for humans



“Inverting the ratio”

Some results:

• More information (in the sense 
of Shannon) does not 
guarantee better classification 
performance.

• Knowing what the information 
is used for (e.g., classification) 
allows one to collect more 
useful information.

• Team theory (how to combine 
classifiers, how to give 
feedback to human operators)

• Main lesson: Humans exhibit a 
lot of variability, and are 
difficult to model



AV Challenges
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• In the near to medium term, AV penetration will   
be small

• AVs will operate in traffic together with human-
driven vehicles (HVs)

• AV control algorithms must account for the 
interactions between AVs and HVs

• This is a harder problem than in an “all-AVs” world Hard brake or lane change?



Why do we need traffic simulation?
• AV control algorithms must account for the interactions between AVs and HVs
• Estimated that one must drive >100 million kilometers to validate autonomous driving software 

and assure against “faults” in the algorithms, e.g., conditions under which the algorithm may 
cause unsafe driving behavior

• Verification and validation (V&V) in virtual world (i.e., using simulation tools) is appealing. 
However, simulators must be able to represent realistic vehicle interactions in traffic

• This leads to the question: How to model and account for the interactions between AVs and HVs?  



Game Theoretic Traffic Simulation

Main Collaborators: Ilya Kolmanovsky, Yildiray Yildiz, Nan Li, Ran Tian.



Game theory

Game theory: The study of strategic decision-making  
The payoff (reward/cost) received by each participant depends on her own action and 
the actions of the other participants of the game.

Conventional tool: Nash equilibrium
Problems: 
1) Outcomes of experimental subjects systematically violate Nash-equilibrium predictions  
2) Nash equilibrium is difficult to compute for multi-player games (traffic scenarios with 
multiple interacting vehicles)

Game

Participants

Payoffs

Traffic Scenario

Drivers/Vehicles

Driving Objectives (Safety, Performance, Comfort, …)



Game theoretic approaches for traffic simulation

Hierarchical reasoning/Level-k approach [1,2] Leader-follower/Stackelberg-like approach [3]

• Players have asymmetric roles: Leader vs 
Follower.

• The leader moves before the follower and 
has the first-mover advantage: The leader 
can influence the follower’s decision through 
her own action choice.

• Use the leader-follower asymmetry to 
represent “right of way” rules.

• Players have bounded rationality and are 
categorized by the “depth” of their strategic 
reasoning (called level).

• A level-k player assumes all other players are 
level-(k-1) and makes her own decision as the 
optimal response to their level-(k-1) 
decisions.

• Use different k to model different driving 
styles (aggressive/conservative) and driving 
intentions (proceeding/yielding)

[1] Li, Oyler, Zhang, Yildiz, Kolmanovsky and Girard (TCST 2018).
[2] Tian, Li, Kolmanovsky, Yildiz and Girard (TITS 2020).

[3] Li, Yao, Kolmanovsky, Atkins and Girard (TITS 2020).



Hierarchical reasoning game theory

q Modeling humans precisely is difficult (Variability, 
small data sets).

q Hierarchical reasoning game theory (level-k game 
theory) attempts to describe human thought 
processes in strategic games. Assumes that players 
base their decisions on their predictions of the likely 
actions of other players.

q Players in strategic games can be categorized by the 
“depth” of their strategic thought. Players have 
bounded rationality.

q Level-k theory predicts human decisions better than 
equilibrium-based models in a range of games.



An example: the Keynesian “beauty” contest
q Keynesian beauty contest: Pick a number between 0 and 100. Winner is the person whose 

number is the closest to half of the average of all the (many) participants' guesses.

q Level zero players: choose a number non-strategically (at random, 42 for Doug 
Adams, birthday, etc.)

q Level one players: choose their number consistent with the belief that all other 
players are level zero. If all other players in the game are level zero, the average of 
those guesses would be about 50. Therefore, a level one player chooses 25.

q Level two players: choose their number consistent with the belief that all other 
players are level one. Since a level one player will choose 25, a level two player should 
choose 12 or 13. This process repeats for higher-level players.

q Studies from other domains show humans are usually level 0, 1 or 2, rarely 3.



Level-k reasoning and reinforcement learning

• Level-𝟎 agent makes instinctive decisions and does not take into account the interactions.
• Level-𝟏 agent assumes all of the other agents are Level-𝟎 and makes optimal responses based on this assumption.

⋮
• Level-𝐤 agent assumes all of the other agents are Level-(𝐤-1) and makes optimal responses based on this 

assumption.

• To obtain the level-k policy, we put a learner in traffic consisting of level-(k-1) drivers, and use reinforcement 
learning to train the learner. In other domains, humans have been shown to usually be levels 0, 1 or 2 decision 
makers. 



Markov Decision Processes

• Markov Decision Process (MDP): A stochastic transition system + a reward function
§ A set of states, 𝓢
§ A set of actions, 𝓐
§ A transition probability function, T: 𝓢 × 𝓐 × 𝓢➛ ℝ+

§ An initial state, s0 ∈ 𝓢
§ A reward function, R: 𝓢 × 𝓐 × 𝓢➛ ℝ+

• If action a is applied from state s, then a transition from state s to state s’ occurs with probability T(s, a, s’). If this 
transition is made, a reward R(s, a, s’) is collected.

• Both transition probabilities and rewards only depend on the present state, not on the history of the state (future 
states and rewards are independent of the past, given the present).

• The state is known exactly (only the transitions are stochastic). If the state is not known exactly: Partially 
Observable Markov Decision Process (POMDP).



MDP for highway driving

q Control Hierarchy. Focus: Higher-level Controller

𝑅 = 𝑤!𝑐 + 𝑤"𝑣 + 𝑤#𝑒 + 𝑤$ℎ

Environment

Higher-level Controller

Lower-level Controller

Vehicle Dynamics

Accel, decel, change lane, 
…

ObservationVehicle

Engine torque, 
gear, steering, …

• Set of states: 
• 3 states per vehicle, longitudinal position and 

velocity, lateral position
• 30-50 vehicles in simulation

• Set of actions: 7 dimensional
• Maintain
• Change lane left/right
• Accelerate/decelerate (regular maneuver)
• Emergency Accelerate/decelerate

• Reward/Penalty: (safe distance) constraint violation, 
vehicle speed, maneuver effort, headway

• Observation space (POMDP): 18-dimensional
• Observe states of 5 neighboring vehicles + self



Q Learning (Reinforcement Learning)
• In some cases, the exact details of the MDP (the transition probabilities) are not known. Q-learning (a 

reinforcement learning technique) estimates the total collected reward for state-action pairs.

• The Q-factor, Q(s, a), is an estimate of the total collected reward collected by 
i. starting at state s, 
ii. applying action a at the first time step, 
iii. acting optimally for all future times. 

• The Q-factor update law, based on an observed transition from s to s’ under action a, is

• Exploration/Exploitation trade-off created.

• 𝛾 is a discount factor (Bellman equation); 𝛼t should decay over time for convergence (for example, as 1/t).
• May use approximation techniques to deal with large state spaces. This may cause instability.

• Use Jaakkola version for POMDP.

Q(s, a) ← (1− αt)Q(s, a) + αt(R(s, a, s′) + γmax
a′

Q(s′, a′))
<latexit sha1_base64="AxhxLXRSZMEUdf6wI0PwQUUyHnA="></latexit><latexit sha1_base64="AxhxLXRSZMEUdf6wI0PwQUUyHnA="></latexit><latexit sha1_base64="AxhxLXRSZMEUdf6wI0PwQUUyHnA="></latexit>

<latexit sha1_base64="AxhxLXRSZMEUdf6wI0PwQUUyHnA="></latexit>



Application to highway driving

• In practice:
• Discretize states (message elements).
• Create simulation environment, initialize with n cars.
• Assign the level-0 policy to n-1 cars. This “replaces” the need for a transition probability model for those 

cars.
• Level-0: Drive at constant speed unless vehicle in front. If vehicle in front, maintain headway.

• Use Jaakkola RL to obtain Q(m,a) for the ego car. The message m replaces the state s in POMDP problems. 
Simulation time: approximately 2 days.

• Obtain stochastic policy from Q(m,a).
• A deterministic policy always returns the same action (that with the highest expected Q value). 
• A stochastic policy models a distribution over actions and draws an action according to this distribution. 

• Policy: a rule that determines a decision given the available information at state s. 

π∗(s) = argmax
a

Q∗(s, a) ∀s ∈ S
<latexit sha1_base64="lDu/kKcyIIYetKsjnPTORuO+vnk="></latexit><latexit sha1_base64="lDu/kKcyIIYetKsjnPTORuO+vnk="></latexit><latexit sha1_base64="lDu/kKcyIIYetKsjnPTORuO+vnk="></latexit>

<latexit sha1_base64="lDu/kKcyIIYetKsjnPTORuO+vnk="></latexit>



Game theoretic highway driving

q A dynamic game of two players • Two players • State of the game • Actions of the players

• Dynamics of the game, can be stochastic

• Reward functions of the players

q A (stochastic) policy of player 𝒊

q A level-k policy of player 𝒊 optimally responds to level-(k-1) policy of the other



Level-1 vs Level-0 Level-2 vs Level-1

Mixed traffic (10% Level-0, 60% Level-1 and 30% Level-2)

Game theoretic traffic modeling results



Is level-k a good model for humans?

• Level-k theory has been shown by numerous experimental 
results from cognitive and behavioral science to predict 
human decisions better than conventional analytic methods 
(such as equilibrium-based models) in a range of games.

• We have also developed our own experiment to validate its 
effectiveness [4].



Is level-k a good model for humans?

Level-k Theory Application to a Penny-Matching Game [4]

AI won, Human lost AI lost, Human won

AI vs real humans

• An AI algorithm was developed to play a repeated penny-matching game. 
• The AI player models the human player as a level-k decision-maker with 

online identification of her k value. 
• Based on the identification result, the AI player maximizes its own chance 

of winning.



Is level-k a good model for driving?
Naturalistic data analysis – Highlights (Collaborators -- Shan Bao, Huayi Li)
– We studied naturalistic data from the Safety Pilot Model Deployment (SPMD) program 

led by UMTRI. Valid driving data come from 79 vehicles equipped with Data 
Acquisition System and Mobileye.

– Our analysis shows that, out of more than 0.3 million miles of highway driving 
episodes in car-following scenarios, all vehicles have exhibited level-0, level-1 and 
level-2 characteristics based on previous definitions adopted by the traffic model, with 
a ratio of 11%, 46%, 43% respectively, which are close to our traffic model 
assumptions.



Is level-k a good model for driving?

Naturalistic data analysis – Level-0
– Level-0 characteristic filter: In each event, the driver travels in the same lane with the speed between 

55mph and 75mph (i.e., no speeding) and with traffic around.
– All 79 valid SPMD vehicle drivers exhibited Level-0 characteristics. Average level-0 ratio is 0.11. This 

means about 11% of the highway driving events show level-0 characteristic, which is close to the 
assumption of the simulator.

– Distribution of number of events vs. event duration:

For level-0 events, the average duration is 1.8 minutes.
Most events are within 2 minutes.

[# of events]

The average duration is 24.5 seconds.
90.8% of events are within 1 minute.



Is level-k a good model for driving?
Naturalistic data analysis – Level-0
– An example of level-0 driving:
§ Driver remains in one lane without lane changing or speeding for approximately 19.2 minutes with an average speed 

of 71 mph, which is the longest event we have observed. 



Is level-k a good model for driving?
Naturalistic data analysis – Level-1  and 
level-2
– Level-1 and level-2 characteristic filter: the 

driver travels with a minimum speed of 
55mph with traffic around, which is similar to 
the level-0 filter except that lane change and 
speeding behavior were observed.

– We then apply the unsupervised learning 
algorithm, K-means ++ clustering, to 
categorize the events into two groups, and 
match them to level-1 and level-2 behaviors 
based on traffic model assumptions.

– Clustering by the K-means ++ method à
Speed

Range Rate

Ra
ng

e



Is level-k a good model for driving?
Naturalistic data analysis – Summary
– The average ratios of level-0, level-1 and level-2 are 11%, 46% and 43% based on total distance traveled on the 

highway.
– Examples of behavioral differences: 
§ Level-0 is the most defensive, keeping the largest distance from the vehicle in front without speeding or lane 

changes.
§ Level-1 is the most aggressive, keeping the smallest distance from the vehicle in front and the largest ratio of 

speeding.
§ The characteristic of level-2 is between level-1 and level-0. Compared with level-1, it has lower number of lane 

changes and ratio of speeding.

Event
Numbers

Avg.
Duration 

(sec.)

Avg.
Range 

(m)

Avg. 
Range 
Rate 
(m/s)

Avg.
Speed
(m/s)

Avg.
Accelerati

on
(m/s2)

Speeding 
Ratio

Lane 
Changes 
per 100 

Miles
Level-0 91546 24.52 71.72 0.15 29.83 -0.18 0 0

Level-1 61034 143.40 49.65 -0.56 32.96 -0.16 0.45 143.88

Level-2 144708 60.22 60.74 -0.48 31.62 -0.17 0.29 111.26



Interactive traffic simulator

Conventional simulator:
• Ego AV is the only intelligent decision-maker.
• Motions of the other vehicles prescribed as 

functions of time or responding to traffic state 
using simple rules.

vs

Interactive simulator:
• Ego and other vehicles are all intelligent 

decision-makers and interact with each other.
• When ego AV takes different actions, the 

other vehicles will respond differently.
vs

�⃗�

�⃗�

Modeling other vehicles in 
traffic using the level-k models!



Interactive Traffic Simulator [5]

Integration of level-k models and 
high-fidelity driving simulator

Level-𝑘 driving 
policies

Vehicles in 
simulator

Traffic state values read 
through simulator API

Convert traffic 
state values into 
required format

Controller:
convert commands 
into control signals 

Action commands or 
desired vehicle states 

Control signals (gas/brake 
pedal, steering wheel angles, …)

Simulator API

Simulated vehicle 
and traffic dynamics Traffic state values read 

through simulator API

Packaged, 
independent 
of simulator

Adjusted based on 
simulator interface 
and vehicle dynamics

[5] Su, Li, Yildiz, Girard and Kolmanovsky (CPHS 2019).

Integration with high-fidelity simulator (TORCS)



vehicle under test

https://cps-vo.org/group/verification_tools/tool/GTTS

Integration with high-fidelity simulator (TORCS)



Un-signalized Intersections

q Represent roughly 50% of intersection crashes in the US
q Require a balance between overly aggressive actions (that do not take into account behavior of 

others) and overly conservative actions (deadlock)
q Challenges: predict other drivers’ actions (interactive), take optimal decision corresponding to the 

prediction

Four-way intersection Roundabout



Un-signalized intersections: Scenarios

Unsignalized four-way intersection Roundabout

2-vehicle interactions at:



MDP for intersections

• Set of states (MDP, not POMDP): 
• 4 states per vehicle, longitudinal and lateral 

positions, speed, yaw angle
• 2-vehicle interactions at first

• Set of actions: 6 possible combinations
• Acceleration
• Yaw rate

• Reward/Penalty: (safe distance) constraint violation, 
vehicle speed, maneuver effort, headway

𝑅 = 𝑤!𝑅! + 𝑤"𝑅" + 𝑤#𝑅# + 𝑤$𝑅$ + 𝑤%𝑅%

𝑅! penalty for collision, 𝑅": penalty for being too close, 𝑅#: penalty for driving off road, 

𝑅$ penalty for driving in wrong lane, 𝑅% reward for approaching objective lane



Un-signalized intersections: Results[2]

Level-1
Level-1 
Level-2

Level-2
Level-2 
Level-1

L0 driver treats the other car as a stationary obstacle and does not take her potential actions into account → aggressive



Un-signalized intersections: Larger network[2]

Level-1
Level-2
Adaptive



Un-signalized intersections: Validation[2]

Top: A traffic scenario extracted from the INTERACTION dataset
Bottom: Simulation snapshots of a level-2 vehicle (blue) interacting 
with a level-1 vehicle (yellow)

(1) (2) (3)

Validation against Traffic Data [2]

(1) (2) (3)

Top: A traffic scenario extracted from the INTERACTION dataset
Bottom: Simulation snapshots of a level-2 vehicle (blue) interacting 
with two level-1 vehicles (yellow and red)
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Generalization to 𝑛–vehicle scenarios

• POMDP:
• The ego car considers its interactions with its 

two nearest neighbors
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Generalization to arbitrary road geometries
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Using the simulator for control design

Interaction-Aware Decision-Making for AVs [6]

Game Theory
Generate a set of interactive driver behavior models, corresponding to 
different driving styles (aggressive/conservative) and driving intentions 
(proceeding/yielding). 

Bayesian Inference
Identify the model(s) that most accurately characterizes the present 
interaction scenario based on observed vehicle trajectories, with 
corresponding identification confidence.

Stochastic Model Predictive Control
Make decisions for ego AV, accounting for driving objectives (crossing, 
merging, …) and providing probabilistic collision-avoidance guarantee.

[6] Li, Li, Girard and Kolmanovsky (CDC 2019).



Using the simulator for control design

Interaction-Aware Decision-Making 

Model Identification 
Based on Bayesian 

Inference

Behavior Prediction

Traffic Scenario

Driving Objective

Behavior Decision for Ego AV

Safety Constraints

Observations

？

SMPC

AV

HV

Control

Decision Making

Online tasks Offline tasks



Using the simulator for control design

Interaction-Aware Decision-Making for AVs [6]
Augmented state

Physical state (observable) Model Id (hidden)Model Identification 
Based on Bayesian 

Inference

Behavior Prediction

Driving Objective

Safety Constraints

SMPC

Decision Making

Model predictions

Identification confidence (belief)

Observations

SMPC

Bayesian inference formula
Behavior Decision for Ego AV

Control



Level-1 (conservative)
Level-1 (conservative)
AV

Level-2 (aggressive)
Level-2 (aggressive)
AV

Level-1 (conservative)
Level-2 (aggressive)
AV

• The AV does not know the driving styles/intentions of the two interacting vehicles a priori.
• Same initial condition, different interaction behavior! 

Interaction-Aware Decision Making for AVs



Level-1 (conservative)
Level-1 (conservative)
AV

Level-2 (aggressive)
Level-2 (aggressive)
AV

• The AV does not know the driving styles/intentions of the two interacting vehicles a priori.
• Same initial condition, different interaction behavior! 

Level-1 (conservative)
Level-2 (aggressive)
AV

Interaction-Aware Decision Making for AVs



Level-1 (conservative)
Level-1 (conservative)
AV

Level-2 (aggressive)
Level-2 (aggressive)
AV

• The AV does not know the driving styles/intentions of the two interacting vehicles a priori.
• Same initial condition, different interaction behavior! 

Level-1 (conservative)
Level-2 (aggressive)
AV

Interaction-Aware Decision Making for AVs



• The AV does not know the driving style/intention of the interacting vehicle a priori.
• Same initial condition, different interaction behavior! 

AV vs Level-1 AV vs Level-2 AV vs Human 1

Roundabout scenario [7]:

AV vs Human 2

We let a human operator control the red car using the keyboard.

[7] Tian, Li, Li, Kolmanovsky, Girard and Yildiz (CDC 2018).

Interaction-Aware Decision Making for AVs



1. Autonomous vehicles (AVs) will likely operate in traffic together with 
human-driven vehicles (HVs). Their control algorithms must account for the 
interactions between AVs and HVs.

2. Game theory is a useful tool for modeling such interactions.
3. The generated interaction models have various applications, e.g., for AV 

control system testing and for interaction-aware AV control.
4. It is possible to apply the proposed game-theoretic approaches to modeling 

interactions of other traffic participants, e.g., pedestrians, cyclists, etc.

Concluding Remarks



Backup



Traffic Rules for Intersections 

Incorporating “Right of Way” Rules through a 
Leader-follower/Stackelberg-like Formulation
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Affordance indicators:
The range to the preceding car in the left lane, and the corresponding range rate,
The range to the preceding car in the current lane, and the corresponding range rate,
The range to the preceding car in the right lane, and the corresponding range rate,
The range to the car following behind in the left lane, and the corresponding range rate,
The range to the car following behind in the right lane, and the corresponding range rate.

Affordance indicators/Automated driving FSM

𝑳

𝑪 𝑨

𝑪: Cruise control mode

𝑨: Adaptive cruise control mode

𝑳: Lane change mode



Testing and calibration in UM traffic simulator

Red car = FSM controller, Yellow cars = level-k game theory



Finite State Machine (rule-based) Human Driver

Zhang, M., Li, N., Girard, A., & Kolmanovsky, I. (2017, October). A Finite State Machine 
Based Automated Driving Controller and its Stochastic Optimization. In ASME 2017 
Dynamic Systems and Control Conference (pp. V002T07A002-V002T07A002). American 
Society of Mechanical Engineers.

Testing and calibration in UM traffic simulator



𝑅 = 𝛾! −𝑐 + 𝛾"
�̅�& − 𝑣'()

𝑣'*& − 𝑣'()

𝑐 is the safety distance constraint violation rate, �̅�& is the 
average speed.

Different combinations of weights:
(1) 𝛾! = 1, 𝛾" = 0;
(2) 𝛾! = 0, 𝛾" = 1;
(3) 𝛾! = 0.7, 𝛾" = 0.3;
(4) 𝛾! = 0.6, 𝛾" = 0.4.

The user can pick the best pair of parameters based on 
their objective function design.

• To obtain the best action sequence, a reward is evaluated after 
each action. A weighted sum of the 2 levels’ rewards is 
computed to represent how good that action sequence is. !!"

!!#
is 

the weight ratio for the 2 levels.
• 𝑥" is the size of a safe zone in the longitudinal direction. If this 

safe zone is violated, the host car decelerates. 

Stochastic optimization of FSM parameters



Bridging Past, Present and Future

• AUTONOMOUS
• COLLABORATIVE
• INTELLIGENT
• LOW-COST
• RECONFIGURABLE
• MULTI-AGENT
• HUMAN-CENTERED

• CONSISTENT
• SAFETY CRITICAL
• COMMERCIAL
• COMPETITIVE
• CERTIFIED
• CONGESTED
• CONTESTED



q New players (Space X, Blue Origin, UAV 
companies, self-driving car technology) 
create demand for a new engineering 
curriculum

q Computing (new forms of computation, 
parallel, neuromorphic, quantum), AI 
and data literacy will have to be
mainstream knowledge like maths and
physics

Opportunities for Engineering



A 4th Industrial Revolution?

• Leverage the abundance of computation power
• Adapt/replace standards for the future
• Discuss certification of new technologies
• Prepare for tradeoffs and new paradigms

Mathematical rigor vs experimental validation 
Deterministic vs stochastic

Physics vs data based

Gap between “cutting edge” and “rigor”
in an era of exponential technologies
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Current/Recent Research

Autonomy and
Decision Making

Path Planning,
Trajectory Opt.

Energy
Management

Unusual 
Configurations

PE games 
(UAV)

Game 
theoretic
traffic 
simulation

TSP stability 
regions 
(UAVs)

UAV 
integrat
ion in 
airspace

Information 
collection

Formation 
flight

MEA/AEA/ fighters Automotive

Disjunctive 
sensing/
control
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