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a b s t r a c t

We detail in this article the development of a delay-robust stabilizing feedback control law for a linear
ordinary differential equation coupled with two linear first order hyperbolic equations in the actuation
path. The proposed method combines the use of a backstepping approach, required to construct a
canceling feedback for the in-domain coupling terms of the PDEs, with a second change of variables that
reduces the stabilization problem of the PDE–ODE system to that of a time-delay system for which a
predictor can be constructed. The proposed controller can be tuned, with some restrictions imposed by
the system structure, either by adjusting a reflection coefficient left on the PDE after the backstepping
transformation, or by choosing the pole placement on the ODEwhen constructing the predictor, enabling
a trade-off between convergence rate and delay-robustness. The proposed feedback law is finally proved
to be robust to small delays in the actuation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we develop a linear feedback control law that
achieves delay-robust stabilization of a system of two heterodi-
rectional linear first-order hyperbolic Partial Differential Equations
(PDEs) coupled through the boundary to an Ordinary Differential
Equation (ODE). The proposed design works for all systems within
the considered class for which delay-robust stabilization by such
a feedback operator can be expected, see Logemann, Rebarber,
and Weiss (1996). We achieve this by partially leveraging the
backstepping design in DiMeglio, Argomedo, Hu, and Krstic (2018)
and complementing it with a predictor-based controller after an
adequate reformulation using a time-delay approach.

The control of systems of coupled ODEs and hyperbolic PDEs
is a very active research topic, see for instance Bekiaris-Liberis
and Krstic (2014), Bresch-Pietri and Krstic (2014), Di Meglio et
al. (2018) and Sagert, Di Meglio, Krstic, and Rouchon (2013). It
naturally arises when considering delays (that can be seen as first-
order hyperbolic PDEs) in the actuating and sensing paths of ODEs
(Bekiaris-Liberis & Krstic, 2014; Bresch-Pietri, 2012; Fridman &
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Shaked, 2002; Sipahi, Niculescu, Abdallah, Michiels, & Gu, 2011;
Yue & Han, 2005). A recurrent practical motivation for the study
of such systems is the attenuation of mechanical vibrations in
drilling applications, where the hyperbolic PDEs represent axial
and torsional stress propagation (waves) along the drill string,
while the ODEmodels the BottomHole Assembly (BHA) dynamics.
A thorough review of drilling vibrations models is available in
Saldivar, Mondié, Niculescu, Mounier, and Boussaada (2016).

The backstepping approach was first used in Krstic and
Smyshlyaev (2008) to deal with hyperbolic PDE–ODE couplings
where actuator and sensor delays are explicitly compensated.
While this problem had already been tackled by the Smith predic-
tor (Smith, 1959), the reformulation of the delay as a linear ODE en-
abled numerous related problems to be tackled, most notably the
presence of non-constant and uncertain delays (Bekiaris-Liberis &
Krstic, 2013; Bresch-Pietri, 2012). Recently, the general problem
of stabilizing an ODE with a system of first-order linear hyperbolic
PDEs in the actuator pathwas solved inDiMeglio et al. (2018) using
a backstepping transformation that maps the fully interconnected
system into a cascade of exponentially stable subsystems. This was
achieved by canceling, among other terms, the reflection at the
controlled boundary. While this approach enables the design of
predictor-like feedback laws, and ismathematically correct, it does
not take into account the impact on stability of small delays in the
feedback loop (delay-robustness).

It has been observed, see for instance Datko, Lagnese, and
Polis (1986) and Logemann et al. (1996), that for many feedback
systems, the introduction of arbitrarily small time-delays in the
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loop may cause instability under linear state feedback. In partic-
ular, for coupled linear hyperbolic systems, recent contributions
(Auriol, Aarsnes, Martin, & Di Meglio, 2018) have highlighted the
necessity of a change of paradigm in order to achieve delay-robust
stabilization. It turns out that, in some cases, one must preserve
some reflection at the boundaries in order to maintain the delay
robustness of the control. Also, in Auriol et al. (2018), the authors
use the backstepping transformation in order to rewrite the sys-
tem as a neutral equation with distributed delays. This opens the
perspective of adapting stability analysis methods for time delay
systems, such as those developed in Damak, Di Loreto, andMondié
(2015), Hale and Verduyn Lunel (2002), Niculescu (2001a, b) on
hyperbolic PDE systems.

The main contribution of this paper is to provide a new design
for a state-feedback law for a PDE–ODE system that ensures the
delay-robust stabilization. Delay-robustness is ensured bypreserv-
ing some proximal reflection terms in the control law. This is done
by means of an additional degree of freedom enabling a trade-
off between convergence rate in the absence of delay and delay-
robustness. Note that the approach of Auriol et al. (2018) cannot
be directly extended since the system naturally features several
feedback loops or couplings that can be sources of instabilities.

Our approach is the following: (i) A backstepping transforma-
tion (and associated feedback operator) is constructed, removing
the in-domain couplings present in the PDEs and possibly atten-
uating the reflections on the controlled side (depending on the
choice of a tuning parameter).Without these in-domain couplings,
the new system can be rewritten as a neutral delay differential
equation. (ii) Using the structure of the obtained equation, we
construct a non-invertible operator that preserves detectability in
order to reduce the stabilization problem of the neutral system
to that of a linear ODE system with delayed input, for which a
state-predictor feedback law is constructed. (iii) Finally, the delay-
robustness properties of the system are studied by means of an
algebraic analysis in the Laplace domain.

The paper is organized as follows. In Section 2 we introduce the
model equations and the notations. In Section 3, we present the
stabilization result: using a backstepping transformation, we first
dissociate the ODE and the PDE. The original system can then be
rewritten as a distributed delay equation for which it is possible
to derive a stabilizing control law. The corresponding feedback
system is proved to be stable to small delays in Section 4. Finally,
some simulation results are given in Section 5.

2. Problem formulation

2.1. Definitions and notations

In this section we detail the notations used through this paper.
For any integer p > 0, ∥ · ∥Rp is the classical euclidean norm on Rp.
We denote by L1([0, 1],R), or L1([0, 1]) if no confusion arises, the
space of real-valued functions defined on [0, 1] whose absolute
value is integrable. This space is equipped with the standard L1
norm, that is, for any f ∈ L1([0, 1])

∥f ∥L1 =

∫ 1

0
|f (x)|dx.

We denote L2([0, 1],R) the space of real-valued square-integrable
functions defined on [0, 1] with the standard L2 norm, i.e., for any
f ∈ L2([0, 1],R)

∥f ∥2
L2 =

∫ 1

0
f 2(x)dx.

The set L∞([0, 1],R) denotes the space of bounded real-valued
functions defined on [0, 1] with the standard L∞ norm, i.e., for

any f ∈ L∞([0, 1],R)

∥f ∥L∞ = sup
x∈[0,1]

|f (x)|.

In the following, for (u, v, X) ∈ (L2([0, 1]))2 × Rp, we define the
norm

∥(u, v, X)∥ = ∥u∥L2 + ∥v∥L2 + ∥X∥Rp . (1)

The set Cp([0, 1]) (with p ∈ N ∪ {∞}) stands for the space of real-
valued functions defined on [0, 1] that are p times differentiable
and whose pth derivative is continuous. The set T is defined as

T = {(x, ξ ) ∈ [0, 1]2 s.t. ξ ≤ x}. (2)

C(T ) stands for the space of real-valued continuous functions on T .
For a positive real k and two reals a < b, a function f defined on
[a, b] is said to be k-Lipschitz if for all (x, y) ∈ [a, b]2, it satisfies
|f (x) − f (y)| ≤ k|x − y|. The symbol Ip (or I if no confusion arises)
represents the p × p identity matrix. We use the notation f̂ (s) for
the Laplace transform of a function f (t), provided it is well defined.
The setA stands for the convolution Banach algebra of BIBO-stable
generalized functions in the sense of Vidyasagar (1972). A function
g(·) belongs to A if it can be expressed as

g(t) = gr (t) +

∞∑
i=0

giδ(t − ti),

where gr ∈ L1(R+,R),
∑

i≥0|gi| < ∞, 0 = t0 < t1 < · · · and δ(·)
is the Dirac distribution. The associated norm is

∥g∥A = ∥gr∥L1 +

∑
i≥0

|gi|.

The set Â of Laplace transforms of elements in A is also a Banach
algebra with associated norm

∥ĝ∥Â = ∥g∥A .

2.2. System under consideration

We consider a class of systems consisting of an ODE coupled to
two heterodirectional first-order linear hyperbolic systems in the
actuation path, depicted schematically in Fig. 1. More precisely, we
consider systems of the form:

ut (t, x) + λux(t, x) = σ+−(x)v(t, x) (3)
vt (t, x) − µvx(t, x) = σ−+(x)u(t, x) (4)

Ẋ(t) = AX(t) + Bv(t, 0), (5)

evolving in {(t, x) s.t. t > 0, x ∈ [0, 1]}, with the boundary
conditions

u(t, 0) = qv(t, 0) + CX(t)
v(t, 1) = ρu(t, 1) + U(t), (6)

where X ∈ Rp is the ODE state, u(t, x) ∈ R and v(t, x) ∈ R are the
PDE states and U(t) is the control input. The in-domain coupling
terms σ−+ and σ+− belong to C0([0, 1]), the boundary coupling
terms q ̸= 0 (distal reflexion) and ρ (proximal reflexion), and
the velocities λ and µ are constants. Furthermore, the velocities
verify

− µ < 0 < λ.

The initial conditions of the state (u, v) are denoted u0 and v0 and
are assumed to belong to L2([0, 1],R) andwe consider onlyweak L2
solutions to the system. The initial condition of the ODE (5) is
denoted X0. The resulting system (3)–(6) is well-posed (Bastin &
Coron, 2016, Theorem A.6, page 254).
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Fig. 1. Schematic representation of the system (3)–(6).

Remark that this system naturally features several couplings
that can be source of instabilities. Also, the results of this paper
can be extended to the case q = 0 with a slight modification of the
backstepping transformation.

2.3. Control problem

The goal of this paper is to design a feedback control law U =

K[(u, v, X)] where K : (L2[0, 1])2 × Rp
→ R is a linear operator,

such that:

• the state (u, v, X) of the resulting feedback system
(3)–(6) exponentially converges to its zero equilibrium
(stabilization problem), i.e. there exist κ0 ≥ 0 and ν > 0
such that for any initial condition (u0, v0, X0) ∈ (L2[0, 1])2 ×

Rp

∥(u, v, X)∥ ≤ κ0e−νt
∥(u0, v0, X0)∥, t ≥ 0. (7)

• the resulting feedback system (3)–(6) is robustly stable with
respect to small delays in the loop (delay-robustness), i.e.
there exists δ⋆ > 0 such that for any δ ∈ [0, δ⋆

], the control
law U(t − δ) still stabilizes (3)–(6).

A control law that satisfies these two constraints is said to delay-
robustly stabilize (in the sense of Logemann et al., 1996) sys-
tem (3)–(6).

In this paper, we make the two following assumptions:

Assumption 1. The pair (A, B) is stabilizable, i.e. there exists a
matrix K such that A + BK is Hurwitz.

Assumption 2. The proximal reflectionρ and the distal reflection q
satisfy |ρq| < 1.

The first assumption (stabilizability of the ODE subsystem) is
necessary for the stabilizability of the whole system, while the
second assumption is required for the existence of a delay-robust
linear feedback control. This second assumption is not restrictive
since, if is not fulfilled, one could prove using arguments similar to
those in Auriol et al. (2018) that the open-loop transfer function
has an infinite number of poles in the complex closed right half-
plane. Consequently (see Logemann et al. 1996, Theorem 1.2), one
cannot find any linear state feedback law U(·) that delay-robustly
stabilizes (3)–(6).

3. Design of the control law

In this section we derive a control law that guarantees the sta-
bilization of (3)–(6), following the methodology introduced above.
Using a backstepping transformation, we map the original system
to a simpler target system without the in-domain couplings. This
new target system is then rewritten as a neutral delay differential
equation. Finally, the stability of this equation is reduced to that
of an ODE with input delay for which a stabilizing control is
constructed. This control law will be shown to be robust to small
delays in the next section.

3.1. Backstepping transformation

We derive a Volterra transformation to rewrite system
(3)–(6) as a system of transport equations coupled with an ODE.
In other words, the purpose of this transformation is to remove
the in-domain coupling terms, while conserving (only attenuating)
boundary couplings. Let us consider the linear map that associates
to any element (α, β, X) ∈ (L2[0, 1])2 × Rp the corresponding
element (u, v, X) ∈ (L2[0, 1])2 × Rp as follows

u(t, x) = α(t, x) +

∫ x

0
Lαα(x, ξ )α(t, ξ )dξ

+

∫ x

0
Lαβ (x, ξ )β(t, ξ )dξ + γ0(x)X(t), (8)

v(t, x) = β(t, x) +

∫ x

0
Lβα(x, ξ )α(t, ξ )dξ

+

∫ x

0
Lββ (x, ξ )β(t, ξ )dξ + γ1(x)X(t), (9)

X(t) = X(t). (10)

This mapping is a Volterra integral transformation and is conse-
quently invertible. The kernels Lαα, Lαβ , Lβα and Lββ are defined
on T introduced in (2), γ0 and γ1 are row vectors with p compo-
nents defined on ([0, 1]). They satisfy the following set of PDEs

λLαα
x (x, ξ ) + λLαα

ξ (x, ξ ) = σ+−(x)Lβα(x, ξ ) (11)

λLαβ
x (x, ξ ) − µLαβ

ξ (x, ξ ) = σ+−(x)Lββ (x, ξ ) (12)

µLβα
x (x, ξ ) − λLβα

ξ (x, ξ ) = −σ−+(x)Lαα(x, ξ ) (13)

µLββ
x (x, ξ ) + µLββ

ξ (x, ξ ) = −σ−+(x)Lαβ (x, ξ ) (14)

and ODEs

λγ ′

0(x) = −γ0(x)A + σ+−(x)γ1(x) − λLαα(x, 0)C (15)

µγ ′

1(x) = γ1(x)A − σ−+(x)γ0(x) + λLβα(x, 0)C (16)

with the boundary conditions

Lβα(x, x) = −
σ−+(x)
λ + µ

, Lαβ (x, x) =
σ+−(x)
λ + µ

(17)

Lαα(x, 0) =
µ

λq
Lαβ (x, 0) −

1
λq

γ0(x)B (18)

Lββ (x, 0) =
λq
µ

Lβα(x, 0) +
1
µ

γ1(x)B (19)

γ1(0) = 0, γ0(0) = 0. (20)

Note that Eq. (18) is only defined for q ̸= 0. If q = 0, the kernel
equations have to be slightly adjusted (see Coron, Vazquez, Krstic,
& Bastin, 2013 for instance) and the resulting target system would
be slightly different. However the method presented in this paper
can still be used.

Lemma 1. Consider system (11)–(20). There exists a unique solu-
tion Lαα , Lαβ , Lβα and Lββ in C(T ) and γ0, γ1 in (C1([0, 1]))p.

Proof. This result follows, with some minor adaptations, from
DiMeglio et al. (2018, Theorem3.2). Themain idea consists on rein-
terpreting the ODEs in (15)–(16) as PDEs evolving in the triangular
domain T with horizontal characteristic lines (since there is only
an evolution along x) and then solving all the PDEs together. In this
case, we extend the ODEs for γ0 and γ1, defined for x ∈ [0, 1], to
the domain (x, ξ ) ∈ T as follows:

γ̃ 0
x (x, ξ ) = −

1
λ

γ̃ 0(x, ξ )A +
σ+−(x)

λ
γ̃ 1(x, ξ ) − Lαα(x, ξ )C

γ̃ 1
x (x, ξ ) =

1
µ

γ̃ 1(x, ξ )A −
σ−+(x)

µ
γ̃ 0(x, ξ ) + Lβα(x, ξ )C,
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with boundary conditions

γ̃ 0(x, x) = γ̃ 1(x, x) = 0,

and the relations

γ0(x) = γ̃ 0(x, 0) (21)

γ1(x) = γ̃ 1(x, 0). (22)

This set of PDEs, together with (11)–(14) can be solved using
the procedure detailed in Di Meglio et al. (2018, Theorem 3.2).
Furthermore, since all coefficients are continuous, it can be shown
that the unique solution obtained is in fact in C(T ) componentwise
(see Coron et al., 2013). This regularity of solution to the PDEs
implies that the solution to the original ODEs is in (C1([0, 1]))p. This
concludes the proof. □

Applying the backstepping transformation defined in (8)–(10)
to the original system (3)–(6) yields

αt (t, x) + λαx(t, x) = 0 (23)
βt (t, x) − µβx(t, x) = 0 (24)

Ẋ(t) = AX(t) + Bβ(t, 0), (25)

with the following boundary conditions

α(t, 0) = qβ(t, 0) + CX(t) (26)
β(t, 1) = ρα(t, 1) + U(t) + (ργ0(1) − γ1(1))X(t)

−

∫ 1

0
(Nα(ξ )α(t, ξ ) + Nβ (ξ )β(t, ξ ))dξ, (27)

where

Nα(ξ ) = Lβα(1, ξ ) − ρLαα(1, ξ ) (28)

Nβ (ξ ) = Lββ (1, ξ ) − ρLαβ (1, ξ ). (29)

The associated initial condition, denoted (α0, β0, X0), is related to
the initial condition (u0, v0, X0) by the inverse of the transforma-
tion (8)–(10). Differentiating (8)–(9)with respect to time and space
and using the boundary conditions (11)–(20), one can check that
it maps the system (23)–(27) to the initial system (3)–(6). Due
to the invertibility of the Volterra transformation (8)–(10), the
two systems (23)–(27) and (3)–(6) are then equivalent. Thus, the
stabilization of (23)–(27) implies the stabilization of the original
system (3)–(6), and conversely.

For the control design of the target system (23)–(25) with the
boundary control (26)–(27), we decompose the control input U(t)
as

U(t) = UODE(t) + UBS(t), (30)

where UODE(·) has to be designed for the stabilization of the ODE
dynamics (25),

UBS(t) = − κ α(t, 1) − (ργ0(1) − γ1(1))X(t)

+

∫ 1

0
(Nα(ξ )α(t, ξ ) + Nβ (ξ )β(t, ξ ))dξ, (31)

and the coefficient κ is chosen such that

|κq| + |ρq| < 1. (32)

The existence of such a κ is a consequence of Assumption 2. The
particular choice of a value of κ verifying this inequality provides
a tuning parameter for the control design. Note that if κ does not
satisfy (32), it is straightforward to adjust the proof of Auriol et al.
(2018) and prove that the system is not robust to arbitrary small
delays.

Remark that, due to the invertibility of the Volterra transforma-
tion (8)–(9), UBS(t) can be expressed in terms of u, v and X .

The purpose of such a control law is to dissociate the stabiliza-
tion of the ODE to the stabilization of the PDE. More precisely, the
control law UBS(t) is designed to eliminate in-domain couplings. It
preserves some proximal reflection in the target system (with the
coefficient κ) to ensure delay-robustness (Auriol et al., 2018). This
control, by itself, would guarantee the delay-robust exponential
stabilization of (3)–(6) without the ODE subsystem (as shown in
Auriol et al., 2018), however, the presence of an ODE (even a stable
one) may easily destabilize the coupled system.

In the next section, we will use (30) and (31) to rewrite (23)–
(27) as a neutral delay differential equation with control input
UODE(t). It becomes then possible to derive a control law using
classical methods (Gu, Kharitonov, & Chen, 2003; Hale & Ver-
duyn Lunel, 1993, 2002) to ensure exponential stabilization.

3.2. A neutral delay differential equation

Eqs. (23)–(24) are transport equations, and consequently, for
any x ∈ [0, 1], we get

α(t, x) = α

(
t −

x
λ

, 0
)

, t ≥
x
λ

(33)

β(t, x) = β

(
t −

1 − x
µ

, 1
)

, t ≥
1 − x

µ
. (34)

The substitution of (30) and (31) in the boundary condition (27)
and the use of (33) lead to,

β(t, 1) = (ρ − κ)α
(
t −

1
λ

, 0
)

+ UODE(t). (35)

Denoting τ =
1
λ

+
1
µ
, it follows from (26), (34) and (35) that, for

any t ≥ τ ,

β(t, 1) = q(ρ − κ)β(t − τ , 1) + (ρ − κ)CX
(
t −

1
λ

)
+UODE(t). (36)

For almost every t < τ , β(t, 1) remains bounded and can
be expressed as a function of (α0, β0, X0). Consequently (using
the inverse of the backstepping transformation (8)–(9)) it can be
expressed as a function of (u0, v0, X0), the initial condition of the
PDE (3)–(5).

The ODE dynamics in (25) can be written as

Ẋ(t) = AX(t) + Bβ
(
t −

1
µ

, 1
)

. (37)

This yields, for any t ≥ τ +
1
µ
,

Ẋ(t) − (ρ − κ)qẊ(t − τ ) = AX(t) − (ρ − κ)qAX(t − τ )

+ Bβ(t −
1
µ

, 1) − (ρ − κ)qBβ(t −
1
µ

− τ , 1).

Thus, using Eq. (36), we can substitute the term β(t −
1
µ
, 1) by an

expression that only depends on X and UODE , that is

Ẋ(t) − (ρ − κ)qẊ(t − τ ) = AX(t) − (ρ − κ)qAX(t − τ )

+ (ρ − κ)BCX(t − τ ) + BUODE

(
t −

1
µ

)
. (38)

Note that this expression still holds for τ ≤ t ≤ τ +
1
µ
.

Taking the Laplace transform and denoting

φ̂(s) = 1 − (ρ − κ)q e−τ s, (39)

one obtains

(sI − A)φ̂(s)X̂(s) = Be−
s
µ ˆ̃UODE(s), (40)

where ˆ̃UODE(s) = ÛODE(s) + (ρ − κ)Ce−
s
λ X̂(s).
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Under Assumption 2, the roots of the characteristic equation
associated to (38) have right-bounded real parts. Thus, there ex-
ists a spectral exponential bound for the existence of the Laplace
transform for (39)–(40).

3.3. Spectral stabilization

We are now able to design the control law ˆ̃UODE(s) that stabi-
lizes (40). Denoting Ŷ (s) = φ̂(s)X̂(s), Eq. (40) can be rewritten as

(sI − A)Ŷ (s) = Be−
s
µ ˆ̃UODE(s). (41)

Due to the detectability of X from the new variable Y , we can
reduce the stabilization problem of the neutral equation (40) into
that of a finite-dimensional systemwith delayed input, that can be
rewritten in time domain as

Ẏ (t) = AY (t) + BŨODE

(
t −

1
µ

)
, t ≥

1
µ

. (42)

Different methods (Zhong, 2006) can be used to design a control
law that stabilizes equation (42). A classical result fromMirkin and
Raskin (2003) states that any control law that stabilizes such an
equation is equivalent to a predictor. We then have the following
lemma.

Lemma 2. Take A, B and K verifying Assumption 1 and any κ such
that (32) holds. Then, the control law

ŨODE(t) = K

(
e

A
µ Y (t) +

∫ t

t− 1
µ

eA(t−ν)BŨODE(ν)dν

)
,

exponentially stabilizes Y (t) in (42). Furthermore, the state feedback

UODE(t) = ŨODE(t) − (ρ − κ)CX
(
t −

1
λ

)
exponentially stabilizes X(t) in (38).

Proof. For the state-predictor feedback ŨODE(·), the closed-loop
system in (42) satisfies

Ẏ (t) = (A + BK )Y (t), t ≥
1
µ

.

Exponential stability is guaranteed by the fact that (A + BK ) is
Hurwitz. By construction of Y (t) and using (39), we have that X(t),
solution of (38), satisfies for any t ≥ τ ,

X(t) = (ρ − κ)qX(t − τ ) + Y (t).

Since |(ρ − κ)q| < 1 by (32), X(t) is also exponentially stable. □

We conclude this section with the following theorem.

Theorem 1. The control law

U(t) = UODE(t) + UBS(t),

where UBS(t) is given in (31) and UODE(t) is defined in Lemma 2,
exponentially stabilizes in the sense of Eq. (7) the system (3)–(6) to
its zero-equilibrium.

Proof. We have proved in Lemma 2 that the control law U(t) =

UODE(t) + UBS(t) exponentially stabilizes X(t) and Y (t) described
by (38) and (42), respectively. Furthermore, according to the de-
composition introduced in (40), the state-predictor feedback in
Lemma 2 can be written as

ŨODE(t) = KY (t +
1
µ
),

which implies that ŨODE(·) exponentially converges to zero. Con-
sequently, using (32), the state β(t, 1) governed by (36) exponen-
tially converges to zero, which in turn implies from (34) that β(t, ·)
converges L2-exponentially to zero.

This implies, from (33) and the boundary condition (26), that
α(t, ·) converges also L2-exponentially to zero. This yields the
existence of κ0 > 0 such that ∥(α, β, X)∥ ≤ κ0e−νt

∥(α0, β0, X0)∥.
Thus the control law U(t) = UODE(t) + UBS(t) ensures the expo-
nential stabilization of (23)–(27). Due to the invertibility of the
backstepping transformation (8)–(9), it is straightforward to prove
the stabilization of (3)–(6). □

Using a backstepping approach combined with a time-delay
approach, we have derived a control law ensuring the exponential
stabilization of (3)–(6) to its zero equilibrium. We need now to
prove that this control law is delay-robust. This is the purpose of
the next section.

4. Delay-robust stabilization

In this section we prove the delay-robustness of the control
law designed in the previous section. Let us consider a small
positive delay δ > 0 on the actuation input U(·). We now get
from (27), (26), (33) and (34)

β(t, 1) = ρα(t −
1
λ

, 0) + U(t − δ) + (ργ0(1) − γ1(1))X(t)

−

∫ 1

0
(Nα(ξ )α(t, ξ ) + Nβ (ξ )β(t, ξ ))dξ

= ρα(t −
1
λ

, 0) + U(t − δ) + (ργ0(1) − γ1(1))X(t)

−

∫ 1

0
(Nα(ξ )α(t −

ξ

λ
, 0) + Nβ (ξ )β(t −

1 − ξ

µ
, 1))dξ

= qρβ(t − τ , 1) + U(t − δ) + ρCX(t −
1
λ
)

+ (ργ0(1) − γ1(1))X(t) −

∫ τ

0
Ñ(ξ )β(t − ξ, 1)dξ

−

∫ 1

0
Nα(ξ )CX(t −

ξ

λ
)dξ, (43)

where

Ñ(ξ ) =

⎧⎪⎨⎪⎩
µNβ (1 − µξ ) for ξ ∈ [0,

1
µ
)

λqNα(λξ −
λ

µ
) for ξ ∈ (

1
µ

, τ ].

The function Ñ(·) has therefore a unique extension to the whole
interval [0, τ ] that is C0 on [0, 1

µ
] and also a unique extension to

that interval that is C0 on [
1
µ
, τ ] (depending only on the value

assigned at 1
µ
). These extensions are k1-Lipschitz on [0, 1

µ
] and k2-

Lipschitz on [
1
µ
, τ ], respectively. However, there is in general a

discontinuity at 1
µ
such that

Ñ
(

1
µ−

)
− Ñ

(
1

µ+

)
= (γ1(1) − ργ0(1))B.

Since for integration purposes these two extensions are equivalent,
and to avoid unnecessarily complex notation, depending on the
context we may refer to one or the other as Ñ(·).

Substituting the expression of U(t) in (30) into (43) yields

β(t, 1) = qρβ(t − τ , 1) − κqβ(t − τ − δ, 1) + UODE(t − δ)

+ ρCX
(
t −

1
λ

)
− κCX

(
t −

1
λ

− δ

)
+ (ργ0(1) − γ1(1))(X(t) − X(t − δ))
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−

∫ τ

0
Ñ(ξ )(β(t − ξ, 1) − β(t − ξ − δ, 1))dξ

−

∫ 1

0
Nα(ξ )C

(
X
(
t −

ξ

λ

)
− X

(
t −

ξ

λ
− δ

))
dξ . (44)

Taking the Laplace transform of (44) and multiplying by B one
can get

Bβ̂(s, 1) − qρBe−τ sβ̂(s, 1) + κqe−(τ+δ)sBβ̂(s, 1)

+

∫ τ

0
Ñ(ξ )(e−ξ s

− e−(ξ+δ)s)dξBβ̂(s, 1) = e−δsBÛODE(s)

+ BC(ρe−
1
λ
s
− κe−( 1

λ
+δ)s)X̂(s)

+ B(ργ0(1) − γ1(1))(1 − e−δs)X̂(s)

−

∫ 1

0
Nα(ξ )BC(e−

ξ
λ
s
− e−( ξ

λ
+δ)s)dξ X̂(s). (45)

The Laplace transform of Eq. (37) implies that (sI − A)X̂(s) =

Be−
s
µ β̂(s, 1). Moreover, using the expression of the state feedback

in Lemma 2, we have

ÛODE(s) =
ˆ̃UODE(s) − (ρ − κ)Ce−

s
λ X̂(s)

= K0(s)φ̂(s)X̂(s) − (ρ − κ)Ce−
s
λ X̂(s), (46)

where K0(s) stands for the Laplace transform of the predictor state
feedback in Lemma 2, namely

K0(s) =

[
I − K (sI − A)−1(I − e−(sI−A) 1µ )B

]−1
Ke

A
µ .

In what follows, we denote

φ̂1(s, δ) = 1 − qρe−τ s
+ κqe−(τ+δ)s

+ (1 − e−δs)
∫ τ

0
Ñ(ξ )e−ξ sdξ . (47)

Multiplying equation (45) by e−
s
µ and using (46), we obtain

(sI − A)(φ̂1(s, δ))X̂(s) = Be−
s
µ [Ce−

s
λ (ρ − κe−δs)

+ e−δsK0(s)φ̂(s) − (ρ − κ)Ce−
s
λ
−sδ

+ (ργ0(1) − γ1(1))(1 − e−δs)

− (1 − e−δs)
∫ 1

0
Nα(ξ )Ce−

ξ s
λ dξ ]X̂(s), (48)

where φ̂ is defined in (39).
From Vidyasagar (1972, Theorem 1), we know that φ1(·, δ) ∈ A

has a unique inverse in A if and only if

inf
Re(s)≥0

|φ̂1(s, δ)| > 0.

We have the following lemma on invertibility of φ̂1(s, δ) in Â
(where the Banach algebra Â is defined in Section 2.1).

Lemma 3. There exists δ⋆
∈ (0, τ ] such that

inf
δ∈[0,δ⋆]

inf
Re(s)≥0

|φ̂1(s, δ)| > 0. (49)

Proof. Consider a fixed δ ∈ [0,min( 1
µ
, 1

λ
)]. The element φ̂1(s, δ)

lies in Â, since Ñ(·) is in L1(R+,R). Furthermore, we have that
φ̂1(s, δ) is invertible in the Banach algebra Â provided that ∥1 −

φ̂1(s, δ)∥Â < 1. Since Ñ(·) with support in [0, τ ] belongs to
L∞([0, τ ],R), a direct calculationusing the triangular inequality for
the L1-norm shows that

∥1 − φ̂1(s, δ)∥Â ≤ |qρ| + |κq| +

∫ δ

0
|Ñ(ξ )| dξ

+

∫ 1
µ

δ

|Ñ(ξ ) − Ñ(ξ − δ)| dξ +

∫ τ

1
µ +δ

|Ñ(ξ ) − Ñ(ξ − δ)| dξ

+

∫ 1
µ +δ

1
µ

(|Ñ(ξ − δ)| + |Ñ(ξ )|)dξ +

∫ τ+δ

τ

|Ñ(ξ − δ)| dξ .

Since Ñ(·) is k1-Lipschitz in [0, 1
µ
] and k2-Lipschitz in [

1
µ
, τ ], we get

∥1 − φ̂1(s, δ)∥Â ≤ |qρ| + |κq| + δ

(
4∥Ñ∥L∞ +

k1
µ

+
k2
λ

)
.

Noting that with the condition (32) we have |qρ| + |κq| < 1, there
exists δ⋆ > 0 with

δ⋆ < min

(
1 − |qρ| − |κq|

4∥Ñ∥L∞ +
k1
µ

+
k2
λ

,min(
1
µ

,
1
λ
)

)
,

such that for any δ ∈ [0, δ⋆
], ∥1 − φ̂1(s, δ)∥Â < 1. This implies

that φ1(t, δ) is a unit of A, that is (49) holds. □

One can now fully understand the importance of the choice of κ
made in (32). This choice is possible due to Assumption 2.

Eq. (48) yields

(sI − A)(φ̂1(s, δ))X̂(s) = Be−
s
µ [Ce−

s
λ (ρ − κe−δs)

− (1 − e−δs)
∫ 1

0
Nα(ξ )Ce−

ξ s
λ dξ − (ρ − κ)Ce−

s
λ
−sδ

+ (ργ0(1) − γ1(1))(1 − e−δs) + e−δsK0(s)φ̂(s)

− K0(s)φ̂1(s, δ) + K0(s)φ̂1(s, δ)]X̂(s).

We consequently get the following characteristic quasipolyno-
mial p(s)

det((sI − A − BK0(s)e
−

s
µ )φ̂1(s, δ) − Be−

s
µ (ρCe−

1
λ
s

− κCe−
1
λ
s−δs

− (1 − e−δs)
∫ 1

0
Nα(ξ )Ce−

ξ
λ
sdξ

+ e−δsK0(s)φ̂(s) − (ρ − κ)Ce−
s
λ
−sδ

− K0(s)φ̂1(s, δ)

+ (ργ0(1) − γ1(1))(1 − e−δs))) = 0. (50)

Let us now denote

F (s) = (sI − (A + BK0(s)e
−

s
µ ))φ̂1(s, δ) (51)

H(s) = Be−
s
µ (ργ0(1) − γ1(1) + ρCe−

s
λ + (ρqe−τ s

− 1

−

∫ τ

0
Ñ(ξ )e−ξ sdξ )K0(s) −

∫ 1

0
Nα(ξ )Ce−

ξ
λ
sdξ ). (52)

Using the definitions of φ̂(s) and φ̂1(s, δ), Eq. (50) can be rewritten
as

p(s) = det(F (s) − (1 − e−δs)H(s)) = 0. (53)

SinceK0(s) is bounded in the right-half plane,H(s) is bounded in the
right-half plane. We are now finally able to prove that the control
lawU(t) as defined in (30) delay-robustly stabilizes the system (3)-
(6).

Theorem 2. The control law U(t) = UODE(t) + UBS(t) as defined
in (30) delay-robustly stabilizes the system (3)–(6). That is, there
exists δ⋆ > 0 such that, for all δ ∈ [0, δ⋆

], U(t) = UODE(t − δ) +

UBS(t − δ) exponentially stabilizes the system (3)–(6).

Proof. The closed-loop characteristic equation can be written as
in (53), where F (s) has all its roots in the left-half complex plane
(see Lemma 3), and H(s) is bounded in the right-half complex
plane. By contradiction, assume that there exist z ∈ C, z ̸= 0
and Re(z) ≥ 0, such that p(z) = 0. There exists η ̸= 0 such that

F (z)η = (1 − e−δz)H(z)η.



500 J. Auriol et al. / Automatica 95 (2018) 494–502

Fig. 2. Time evolution of the ∥ · ∥-norm of system (3)–(5) for the parameters (55)–
(56) for different values of κ without any delay.

This yields

η∗F∗(z)F (z)η = |1 − e−δz
|
2
η∗H∗(z)H(z)η,

where ∗ denotes the conjugate transpose. Since F (z) is non singular
in C+, there exists M0 > 0 such that M0 < η∗F∗(z)F (z)η.
Similarly, H(z) is bounded in C+, so that there exists M1 > 0 such
that

M0 ≤ |1 − e−δz
|
2
η∗H∗(z)H(z)η ≤ |1 − e−δz

|
2M1.

Construct δm(z) =
δ̄
|z| , for some δ̄ > 0 such that eδ̄ < 1 +

√
M0
M1

. It
follows that for any δ ≤ δm(z),

|1 − e−δz
| ≤ eδ̄

− 1 <

√
M0

M1
. (54)

Since p(s) has only a finite number of zeros in the right-half plane,
where the zeros have finite module (Hale & Verduyn Lunel, 2002),
the quantity δ⋆

= minzδm(z) is strictly positive. This implies that
for any δ ≤ δ⋆, (54) holds. This leads to a contradiction with
the previous inequality. Hence there does not exist any z ∈ C+

such that p(z) = 0. Furthermore, since the principal term of
p(s) is precisely the principal term of φ̂1(s, δ) which is stable by
construction (see Lemma 3), the asymptotic vertical chain of zeros
of p(s) cannot be the imaginary axis. This implies delay-robust
stability since all zeros of p(s) are in the open left-half complex
plane. □

5. Simulation results

In this section we illustrate our results with simulations.
Let us consider the unstable system (3)–(6) for which the coef-

ficients are defined by

λ = µ = σ+−
= σ−+

= q = 1, ρ = 0.6. (55)
A = 0.1, B = 0.1, C = 0.2. (56)

The parameters values are chosen such that

• the ODE and the PDE open-loop system are unstable (Bastin
& Coron, 2016),

• the reflexion terms satisfy 0 < |ρq| < 1,
so that Assumption 2 is fulfilled.

We consider the norm ∥ · ∥ defined by (1). The initial condition is
chosen as a C1 function. Similarly to Auriol et al. (2018), the con-
dition (32) means that one cannot completely cancel the proximal

Fig. 3. Time evolution of the ∥ · ∥-norm of system (3)–(5) for the parameters (55)–
(56) for different values of κ in presence of a 0.02s delay.

Fig. 4. Evolution of u(t, x) for a value of κ = 0.3 in presence of a 0.02 s delay.

reflexion term ρu(t, 1) to design a delay-robust control law when
|ρq| > 1

2 . To emphasize this property, we choose |ρq| = 0.6 > 1
2

in our simulations. The algorithm we use is adapted from the one
proposed in Auriol and Di Meglio (2016). Using the method of
characteristics, we write the integral equations associated to the
PDE-system (11)–(20). These integral equations are solved using a
fixed-point algorithm. These kernels are then used to compute the
control law. Finally, the original system (3)–(6) is simulated using
a Godunov’s discretization scheme. The predictor is adjusted from
the one presented in Mondié and Michiels (2003).

Fig. 2 pictures the ∥ · ∥-norm of the state (u, v, X) using the
control law (31) for different values of κ without any delaywhereas
a small delay in the loop (δ = 0.02 s) is considered in Fig. 3.
Choosing κ so that (32) holds, the resulting stabilizing control law
is delay-robust. For such a value of κ , due to the definition of ∥ · ∥,
the state X converges to zero. Fig. 4 shows the evolution of u(t, x)
in presence of the delay δ = 0.02 s for a value of κ = 0.3. Note
that the convergence is only guaranteed in the sense of (7). Finally,
Fig. 5 depicts the control effort for different values of κ in presence
of the delay δ = 0.02 s.

6. Concluding remarks

In this paper, a delay-robust stabilizing feedback control law
was developed for a coupled hyperbolic PDE–ODE system. The
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Fig. 5. Time evolution of the control effort U(t) for different values of κ in presence
of a 0.02 s delay.

proposed method combines a first feedback constructed using the
backstepping approachwith a second predictor-type feedback. The
second feedback control is obtained after a suitable change of
variables that reduces the stabilization problem of the PDE–ODE
system to that of anODEwith input delay forwhich classical results
for delay equations can be used. The robustness to small delays
(in the actuation) of our combined feedback strategy is ensured
by preserving some proximal reflection terms in the PDEs in the
backstepping design. The degree to which these reflection terms
are canceled introduces a tuning parameter that enables some
trade-offs between convergence rates in the nominal system and
delay-robustness. In futureworks, the delay-robustness properties
of the output-feedback controller (crucial for application on an
industrial problem) remain to be considered.

References

Auriol, J., Aarsnes, U. J. F., Martin, P., & Di Meglio, F. (2018). Delay-robust control de-
sign for two heterodirectional linear coupled hyperbolic PDEs. IEEE Transactions
on Automatic Control.

Auriol, J., & Di Meglio, F. (2016). Minimum time control of heterodirectional linear
coupled hyperbolic pdes. Automatica, 71, 300–307.

Bastin, G., & Coron, J.-M. (2016). Stability and boundary stabilization of 1-D hyperbolic
systems. Springer.

Bekiaris-Liberis, N., & Krstic, M. (2013). Nonlinear control under nonconstant delays.
SIAM.

Bekiaris-Liberis, N., & Krstic, M. (2014). Compensation of wave actuator dy-
namics for nonlinear systems. IEEE Transactions on Automatic Control, 59(6),
1555–1570.

Bresch-Pietri, D. (2012). Commande robuste de systèmes à retard variable: Contribu-
tions théoriques et applications au contrôle moteur (Ph.D. thesis), Ecole Nationale
Supérieure des Mines de Paris.

Bresch-Pietri, D., & Krstic, M. (2014). Adaptive output feedback for oil drilling stick-
slip instability modeled by wave pde with anti-damped dynamic boundary.
In American control conference (ACC), 2014 (pp. 386–391). IEEE.

Coron, J.-M., Vazquez, R., Krstic, M., & Bastin, G. (2013). Local exponential h2

stabilization of a 2× 2 quasilinear hyperbolic system using backstepping. SIAM
Journal on Control and Optimization, 51(3), 2005–2035.

Damak, S., Di Loreto, M., &Mondié, S. (2015). Stability of linear continuous-time dif-
ference equations with distributed delay: Constructive exponential estimates.
International Journal of Robust and Nonlinear Control, 25(17), 3195–3209.

Datko, R., Lagnese, J., & Polis, M. P. (1986). An example on the effect of time delays
in boundary feedback stabilization of wave equations. SIAM Journal on Control
and Optimization, 24(1), 152–156.

Di Meglio, Florent, Argomedo, Federico Bribiesca, Hu, Long, & Krstic, Miroslav
(2018). Stabilization of coupled linear heterodirectional hyperbolic pde–ode
systems. Automatica, 87, 281–289.

Fridman, E., & Shaked, U. (2002). H∞-control of linear state-delay descriptor sys-
tems: an LMI approach. Linear Algebra and its Applications, 351, 271–302.

Gu, K., Kharitonov, V. L., & Chen, J. (2003). Stability of time-delay systems. Birkhäuser.
Hale, J. K., & Verduyn Lunel, S. M. (1993). Introduction to functional differential

equations. Springer-Verlag.
Hale, J. K., & Verduyn Lunel, S. M. (2002). Strong stabilization of neutral functional

differential equations. IMA Journal of Mathematical Control and Information, 19(1
and 2), 5–23.

Krstic, M., & Smyshlyaev, A. (2008). Backstepping boundary control for first-order
hyperbolic PDEs and application to systems with actuator and sensor delays.
Systems & Control Letters, 57(9), 750–758.

Logemann, H., Rebarber, R., & Weiss, G. (1996). Conditions for robustness and
nonrobustness of the stability of feedback systems with respect to small delays
in the feedback loop. SIAM Journal on Control and Optimization, 34(2), 572–600.

Mirkin, L., & Raskin, N. (2003). Every stabilizing dead-time controller has an
observer-predictor-based structure. Automatica, 39, 1747–1754.

Mondié, S., & Michiels, W. (2003). Finite spectrum assignment of unstable time-
delay systems with a safe implementation. IEEE Transactions on Automatic
Control, 48(12), 2207–2212.

Niculescu, S.-I. (2001a). Delay effects on stability: a robust control approach, Vol. 269.
Springer Science & Business Media.

Niculescu, S.-I. (2001b). On delay-dependent stability undermodel transformations
of some neutral linear systems. International Journal of Control, 74(6), 609–617.

Sagert, C., Di Meglio, F., Krstic, M., & Rouchon, P. (2013). Backstepping and flatness
approaches for stabilization of the stick-slip phenomenon for drilling. IFAC
Proceedings Volumes, 46(2), 779–784.

Saldivar, B., Mondié, S., Niculescu, S.-I., Mounier, H., & Boussaada, I. (2016). A control
oriented guided tour in oilwell drilling vibration modeling. Annual Reviews in
Control, 42, 100–113.

Sipahi, R., Niculescu, S.-I., Abdallah, C. T., Michiels, W., & Gu, K. (2011). Stability and
stabilization of systems with time delay. IEEE Control Systems, 31(1), 38–65.

Smith, O. (1959). A controller to overcome dead time. ISA Journal, 6, 28–33.
Vidyasagar, M. (1972). Input-output stability of a broad class of linear time-

invariant multivariable systems. SIAM Journal Control, 10(1), 203–209.
Yue, D., & Han, Q.-L. (2005). Delayed feedback control of uncertain systems with

time-varying input delay. Automatica, 41(2), 233–240.
Zhong, Q.-C. (2006). Robust control of time-delay systems. Springer-Verlag.

JeanAuriol received hisMaster degree in civil engineering
in 2015 (major: appliedmaths) inMINES ParisTech, part of
PSL Research University. He started the same year his PhD
at Centre Automatique et Systèmes of MINES ParisTech,
part of the same university, under the direction of Flo-
rent Di Meglio. His PhD subject deals with robust control,
observability and estimation design of hyperbolic Partial
Differential Equations using a backstepping approach.

Federico Bribiesca-Argomedo received the B.Sc. degree
in mechatronics engineering from the Tecnológico de
Monterrey, Monterrey, Mexico, in 2009, the M.Sc. degree
in control systems from Grenoble INP, Grenoble, France,
in 2009, and the Ph.D. degree in control systems from the
GIPSA-Laboratory, Grenoble University, Grenoble. He held
a post-doctoral position with the Department of Mechan-
ical and Aerospace Engineering, University of California at
San Diego, CA, USA. He is currently an Associate Professor
with the Department of Mechanical Engineering, Institut
national des sciences appliquées de Lyon, Lyon, France,

attached to Ampère Laboratory. His current research interests include control of
hyperbolic and parabolic partial differential equations andnonlinear control theory.
He has applied these techniques to several domains including tokamak safety
factor profiles, electrochemical models of Li-ion batteries and energy distribution
networks.

David Bou Saba received his B.Sc. degree in mechani-
cal engineering from the Lebanese University, Faculty of
engineering, Roumieh, Lebanon, and his M.Sc. degree in
control systems from École Centrale of Lyon, France. He is
currently a Ph.D. student at Institut National des Sciences
Appliquées of Lyon, France, under the direction of Federico
Bribiesca-Argomedo. His research interests include analy-
sis and control of hyperbolic PDEs.

http://refhub.elsevier.com/S0005-1098(18)30325-X/sb1
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb1
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb1
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb1
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb1
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb1
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb1
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb1
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb1
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb1
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb1
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb1
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb2
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb2
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb2
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb2
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb2
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb2
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb2
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb2
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb2
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb2
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb2
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb3
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb3
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb3
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb3
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb3
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb3
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb3
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb3
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb3
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb3
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb3
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb3
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb4
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb4
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb4
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb4
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb4
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb4
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb4
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb4
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb4
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb4
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb4
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb4
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb5
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb6
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb7
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb8
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb9
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb10
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb11
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb12
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb12
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb12
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb12
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb12
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb12
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb12
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb12
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb12
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb12
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb12
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb12
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb12
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb13
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb13
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb13
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb13
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb13
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb13
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb13
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb13
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb13
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb14
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb14
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb14
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb14
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb14
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb14
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb14
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb14
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb14
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb14
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb14
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb14
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb14
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb15
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb16
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb17
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb18
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb18
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb18
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb18
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb18
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb18
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb18
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb18
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb18
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb18
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb18
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb18
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb18
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb19
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb20
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb20
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb20
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb20
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb20
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb20
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb20
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb20
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb20
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb20
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb20
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb20
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb20
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb21
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb21
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb21
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb21
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb21
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb21
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb21
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb21
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb21
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb21
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb21
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb21
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb21
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb22
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb23
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb24
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb24
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb24
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb24
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb24
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb24
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb24
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb24
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb24
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb24
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb24
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb24
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb24
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb25
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb25
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb25
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb25
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb25
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb25
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb25
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb25
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb25
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb26
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb26
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb26
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb26
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb26
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb26
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb26
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb26
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb26
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb26
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb26
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb26
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb26
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb27
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb27
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb27
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb27
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb27
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb27
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb27
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb27
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb27
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb27
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb27
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb27
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb27
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb28
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb28
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb28
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb28
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb28
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb28
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb28
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb28
http://refhub.elsevier.com/S0005-1098(18)30325-X/sb28


502 J. Auriol et al. / Automatica 95 (2018) 494–502

Michael Di Loreto obtained his Ph.D degree in control
theory from Université de Nantes (France) in 2006. Since
2007, he is an associate professor at Laboratoire Ampère,
INSA de Lyon, France. His main research interests are in
time-delay systems, distributed parameter systems and
linear control theory.

Florent Di Meglio is tenured professor at the Centre Au-
tomatique et Systèmes of MINES ParisTech, part of PSL
Research University. He received his Ph.D. from the same
university in Mathematics and Control in 2011, and was
a Postdoctoral Researcher at UC San Diego from 2011 to
2012. His current research interests include control and
estimation design for hyperbolic PDEs, with application to
process control, most notablymultiphase flow control and
oil drilling.


	Delay-robust stabilization of a hyperbolic PDE–ODE system
	Introduction
	Problem formulation
	Definitions and notations
	System under consideration
	Control problem

	Design of the control law
	Backstepping transformation
	A neutral delay differential equation
	Spectral stabilization

	Delay-robust stabilization
	Simulation results
	Concluding remarks
	References


